|
74 | 74 |
|
75 | 75 | <!-- 这里可写通用的实现逻辑 -->
|
76 | 76 |
|
| 77 | +**方法一:动态规划** |
| 78 | + |
| 79 | +我们定义 $f[i][j][k]$ 表示将下标 $[0,..i]$ 的房子涂上颜色,最后一个房子的颜色为 $j$,且恰好形成 $k$ 个街区的最小花费。那么答案就是 $f[m-1][j][target]$,其中 $j$ 的取值范围为 $[1,..n]$。初始时,我们判断下标为 $0$ 的房子是否已经涂色,如果未涂色,那么 $f[0][j][1] = cost[0][j - 1]$,其中 $j \in [1,..n]$。如果已经涂色,那么 $f[0][houses[0]][1] = 0$。其他的 $f[i][j][k]$ 的值都初始化为 $\infty$。 |
| 80 | + |
| 81 | +接下来,我们从下标 $i=1$ 开始遍历,对于每个 $i$,我们判断下标为 $i$ 的房子是否已经涂色: |
| 82 | + |
| 83 | +如果未涂色,那么我们可以将下标为 $i$ 的房子涂成颜色 $j$,我们枚举街区的数量 $k$,其中 $k \in [1,..min(target, i + 1)]$,并且枚举下标为 $i$ 的房子的前一个房子的颜色 $j_0$,其中 $j_0 \in [1,..n]$,那么我们可以得到状态转移方程: |
| 84 | + |
| 85 | +$$ |
| 86 | +f[i][j][k] = \min_{j_0 \in [1,..n]} \{ f[i - 1][j_0][k - (j \neq j_0)] + cost[i][j - 1] \} |
| 87 | +$$ |
| 88 | + |
| 89 | +如果已经涂色,那么我们可以将下标为 $i$ 的房子涂成颜色 $j$,我们枚举街区的数量 $k$,其中 $k \in [1,..min(target, i + 1)]$,并且枚举下标为 $i$ 的房子的前一个房子的颜色 $j_0$,其中 $j_0 \in [1,..n]$,那么我们可以得到状态转移方程: |
| 90 | + |
| 91 | +$$ |
| 92 | +f[i][j][k] = \min_{j_0 \in [1,..n]} \{ f[i - 1][j_0][k - (j \neq j_0)] \} |
| 93 | +$$ |
| 94 | + |
| 95 | +最后,我们返回 $f[m - 1][j][target]$,其中 $j \in [1,..n]$,如果所有的 $f[m - 1][j][target]$ 的值都为 $\infty$,那么返回 $-1$。 |
| 96 | + |
| 97 | +时间复杂度 $O(m \times n^2 \times target)$,空间复杂度 $O(m \times n \times target)$。其中 $m$, $n$, $target$ 分别为房子的数量,颜色的数量,街区的数量。 |
| 98 | + |
77 | 99 | <!-- tabs:start -->
|
78 | 100 |
|
79 | 101 | ### **Python3**
|
80 | 102 |
|
81 | 103 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
82 | 104 |
|
83 | 105 | ```python
|
84 |
| - |
| 106 | +class Solution: |
| 107 | + def minCost(self, houses: List[int], cost: List[List[int]], m: int, n: int, target: int) -> int: |
| 108 | + f = [[[inf] * (target + 1) for _ in range(n + 1)] for _ in range(m)] |
| 109 | + if houses[0] == 0: |
| 110 | + for j, c in enumerate(cost[0], 1): |
| 111 | + f[0][j][1] = c |
| 112 | + else: |
| 113 | + f[0][houses[0]][1] = 0 |
| 114 | + for i in range(1, m): |
| 115 | + if houses[i] == 0: |
| 116 | + for j in range(1, n + 1): |
| 117 | + for k in range(1, min(target + 1, i + 2)): |
| 118 | + for j0 in range(1, n + 1): |
| 119 | + if j == j0: |
| 120 | + f[i][j][k] = min( |
| 121 | + f[i][j][k], f[i - 1][j][k] + cost[i][j - 1]) |
| 122 | + else: |
| 123 | + f[i][j][k] = min( |
| 124 | + f[i][j][k], f[i - 1][j0][k - 1] + cost[i][j - 1]) |
| 125 | + else: |
| 126 | + j = houses[i] |
| 127 | + for k in range(1, min(target + 1, i + 2)): |
| 128 | + for j0 in range(1, n + 1): |
| 129 | + if j == j0: |
| 130 | + f[i][j][k] = min(f[i][j][k], f[i - 1][j][k]) |
| 131 | + else: |
| 132 | + f[i][j][k] = min(f[i][j][k], f[i - 1][j0][k - 1]) |
| 133 | + |
| 134 | + ans = min(f[-1][j][target] for j in range(1, n + 1)) |
| 135 | + return -1 if ans >= inf else ans |
85 | 136 | ```
|
86 | 137 |
|
87 | 138 | ### **Java**
|
88 | 139 |
|
89 | 140 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
90 | 141 |
|
91 | 142 | ```java
|
| 143 | +class Solution { |
| 144 | + public int minCost(int[] houses, int[][] cost, int m, int n, int target) { |
| 145 | + int[][][] f = new int[m][n + 1][target + 1]; |
| 146 | + final int inf = 1 << 30; |
| 147 | + for (int[][] g : f) { |
| 148 | + for (int[] e : g) { |
| 149 | + Arrays.fill(e, inf); |
| 150 | + } |
| 151 | + } |
| 152 | + if (houses[0] == 0) { |
| 153 | + for (int j = 1; j <= n; ++j) { |
| 154 | + f[0][j][1] = cost[0][j - 1]; |
| 155 | + } |
| 156 | + } else { |
| 157 | + f[0][houses[0]][1] = 0; |
| 158 | + } |
| 159 | + for (int i = 1; i < m; ++i) { |
| 160 | + if (houses[i] == 0) { |
| 161 | + for (int j = 1; j <= n; ++j) { |
| 162 | + for (int k = 1; k <= Math.min(target, i + 1); ++k) { |
| 163 | + for (int j0 = 1; j0 <= n; ++j0) { |
| 164 | + if (j == j0) { |
| 165 | + f[i][j][k] = Math.min(f[i][j][k], f[i - 1][j][k] + cost[i][j - 1]); |
| 166 | + } else { |
| 167 | + f[i][j][k] = Math.min(f[i][j][k], f[i - 1][j0][k - 1] + cost[i][j - 1]); |
| 168 | + } |
| 169 | + } |
| 170 | + } |
| 171 | + } |
| 172 | + } else { |
| 173 | + int j = houses[i]; |
| 174 | + for (int k = 1; k <= Math.min(target, i + 1); ++k) { |
| 175 | + for (int j0 = 1; j0 <= n; ++j0) { |
| 176 | + if (j == j0) { |
| 177 | + f[i][j][k] = Math.min(f[i][j][k], f[i - 1][j][k]); |
| 178 | + } else { |
| 179 | + f[i][j][k] = Math.min(f[i][j][k], f[i - 1][j0][k - 1]); |
| 180 | + } |
| 181 | + } |
| 182 | + } |
| 183 | + } |
| 184 | + } |
| 185 | + int ans = inf; |
| 186 | + for (int j = 1; j <= n; ++j) { |
| 187 | + ans = Math.min(ans, f[m - 1][j][target]); |
| 188 | + } |
| 189 | + return ans >= inf ? -1 : ans; |
| 190 | + } |
| 191 | +} |
| 192 | +``` |
| 193 | + |
| 194 | +### **C++** |
| 195 | + |
| 196 | +```cpp |
| 197 | +class Solution { |
| 198 | +public: |
| 199 | + int minCost(vector<int>& houses, vector<vector<int>>& cost, int m, int n, int target) { |
| 200 | + int f[m][n + 1][target + 1]; |
| 201 | + memset(f, 0x3f, sizeof(f)); |
| 202 | + if (houses[0] == 0) { |
| 203 | + for (int j = 1; j <= n; ++j) { |
| 204 | + f[0][j][1] = cost[0][j - 1]; |
| 205 | + } |
| 206 | + } else { |
| 207 | + f[0][houses[0]][1] = 0; |
| 208 | + } |
| 209 | + for (int i = 1; i < m; ++i) { |
| 210 | + if (houses[i] == 0) { |
| 211 | + for (int j = 1; j <= n; ++j) { |
| 212 | + for (int k = 1; k <= min(target, i + 1); ++k) { |
| 213 | + for (int j0 = 1; j0 <= n; ++j0) { |
| 214 | + if (j == j0) { |
| 215 | + f[i][j][k] = min(f[i][j][k], f[i - 1][j][k] + cost[i][j - 1]); |
| 216 | + } else { |
| 217 | + f[i][j][k] = min(f[i][j][k], f[i - 1][j0][k - 1] + cost[i][j - 1]); |
| 218 | + } |
| 219 | + } |
| 220 | + } |
| 221 | + } |
| 222 | + } else { |
| 223 | + int j = houses[i]; |
| 224 | + for (int k = 1; k <= min(target, i + 1); ++k) { |
| 225 | + for (int j0 = 1; j0 <= n; ++j0) { |
| 226 | + if (j == j0) { |
| 227 | + f[i][j][k] = min(f[i][j][k], f[i - 1][j][k]); |
| 228 | + } else { |
| 229 | + f[i][j][k] = min(f[i][j][k], f[i - 1][j0][k - 1]); |
| 230 | + } |
| 231 | + } |
| 232 | + } |
| 233 | + } |
| 234 | + } |
| 235 | + int ans = 0x3f3f3f3f; |
| 236 | + for (int j = 1; j <= n; ++j) { |
| 237 | + ans = min(ans, f[m - 1][j][target]); |
| 238 | + } |
| 239 | + return ans == 0x3f3f3f3f ? -1 : ans; |
| 240 | + } |
| 241 | +}; |
| 242 | +``` |
92 | 243 |
|
| 244 | +### **Go** |
| 245 | +
|
| 246 | +```go |
| 247 | +func minCost(houses []int, cost [][]int, m int, n int, target int) int { |
| 248 | + f := make([][][]int, m) |
| 249 | + const inf = 1 << 30 |
| 250 | + for i := range f { |
| 251 | + f[i] = make([][]int, n+1) |
| 252 | + for j := range f[i] { |
| 253 | + f[i][j] = make([]int, target+1) |
| 254 | + for k := range f[i][j] { |
| 255 | + f[i][j][k] = inf |
| 256 | + } |
| 257 | + } |
| 258 | + } |
| 259 | + if houses[0] == 0 { |
| 260 | + for j := 1; j <= n; j++ { |
| 261 | + f[0][j][1] = cost[0][j-1] |
| 262 | + } |
| 263 | + } else { |
| 264 | + f[0][houses[0]][1] = 0 |
| 265 | + } |
| 266 | + for i := 1; i < m; i++ { |
| 267 | + if houses[i] == 0 { |
| 268 | + for j := 1; j <= n; j++ { |
| 269 | + for k := 1; k <= target && k <= i+1; k++ { |
| 270 | + for j0 := 1; j0 <= n; j0++ { |
| 271 | + if j == j0 { |
| 272 | + f[i][j][k] = min(f[i][j][k], f[i-1][j][k]+cost[i][j-1]) |
| 273 | + } else { |
| 274 | + f[i][j][k] = min(f[i][j][k], f[i-1][j0][k-1]+cost[i][j-1]) |
| 275 | + } |
| 276 | + } |
| 277 | + } |
| 278 | + } |
| 279 | + } else { |
| 280 | + j := houses[i] |
| 281 | + for k := 1; k <= target && k <= i+1; k++ { |
| 282 | + for j0 := 1; j0 <= n; j0++ { |
| 283 | + if j == j0 { |
| 284 | + f[i][j][k] = min(f[i][j][k], f[i-1][j][k]) |
| 285 | + } else { |
| 286 | + f[i][j][k] = min(f[i][j][k], f[i-1][j0][k-1]) |
| 287 | + } |
| 288 | + } |
| 289 | + } |
| 290 | + } |
| 291 | + } |
| 292 | + ans := inf |
| 293 | + for j := 1; j <= n; j++ { |
| 294 | + ans = min(ans, f[m-1][j][target]) |
| 295 | + } |
| 296 | + if ans == inf { |
| 297 | + return -1 |
| 298 | + } |
| 299 | + return ans |
| 300 | +} |
| 301 | +
|
| 302 | +func min(a, b int) int { |
| 303 | + if a < b { |
| 304 | + return a |
| 305 | + } |
| 306 | + return b |
| 307 | +} |
93 | 308 | ```
|
94 | 309 |
|
95 | 310 | ### **...**
|
|
0 commit comments