|
46 | 46 |
|
47 | 47 | <!-- 这里可写通用的实现逻辑 -->
|
48 | 48 |
|
| 49 | +**方法一:二分查找** |
| 50 | + |
| 51 | +我们注意到,如果一个膨胀值 $x$ 满足条件,那么所有小于 $x$ 的值也都满足条件,这存在着单调性。因此我们可以使用二分查找的方法,找到最大的满足条件的膨胀值。 |
| 52 | + |
| 53 | +我们定义二分查找的左边界 $left=0$, $right=rampart[1][0]-rampart[0][1]+rampart[2][0]-rampart[1][1]$,其中 $rampart[i][0]$ 表示第 $i$ 段城墙的左端点,$rampart[i][1]$ 表示第 $i$ 段城墙的右端点。 |
| 54 | + |
| 55 | +接下来,我们开始进行二分查找。每一次,我们求出当前的中间值 $mid$,并判断其是否满足条件。如果满足条件,那么我们就将左边界 $left$ 更新为 $mid$,否则将右边界 $right$ 更新为 $mid-1$。在二分查找结束后,我们返回左边界 $left$ 即可。 |
| 56 | + |
| 57 | +那么问题的关键在于如何判断一个值 $w$ 是否满足条件。显然,我们可以用贪心的策略,每次先尽可能往左膨胀,如果还有剩余的膨胀值,再往右膨胀,如果在向右膨胀的过程中,发生了重叠,那么说明当前的膨胀值 $w$ 不满足条件,直接返回 `false` 即可。否则,遍历结束,返回 `true`。 |
| 58 | + |
| 59 | +时间复杂度 $O(n \times \log M)$,其中 $n$ 和 $M$ 分别是数组 $rampart$ 的长度和二分查找的右边界,本题中右边界最大为 $range=rampart[1][0]-rampart[0][1]+rampart[2][0]-rampart[1][1]$。空间复杂度 $O(1)$。 |
| 60 | + |
49 | 61 | <!-- tabs:start -->
|
50 | 62 |
|
51 | 63 | ### **Python3**
|
52 | 64 |
|
53 | 65 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
54 | 66 |
|
55 | 67 | ```python
|
56 |
| - |
| 68 | +class Solution: |
| 69 | + def rampartDefensiveLine(self, rampart: List[List[int]]) -> int: |
| 70 | + def check(w: int) -> bool: |
| 71 | + last = rampart[0][1] |
| 72 | + for i in range(1, len(rampart) - 1): |
| 73 | + x, y = rampart[i] |
| 74 | + a = x - last |
| 75 | + b = max(w - a, 0) |
| 76 | + if y + b > rampart[i + 1][0]: |
| 77 | + return False |
| 78 | + last = y + b |
| 79 | + return True |
| 80 | + |
| 81 | + left, right = 0, rampart[1][0] - rampart[0][1] + rampart[2][0] - rampart[1][1] |
| 82 | + while left < right: |
| 83 | + mid = (left + right + 1) >> 1 |
| 84 | + if check(mid): |
| 85 | + left = mid |
| 86 | + else: |
| 87 | + right = mid - 1 |
| 88 | + return left |
57 | 89 | ```
|
58 | 90 |
|
59 | 91 | ### **Java**
|
60 | 92 |
|
61 | 93 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
62 | 94 |
|
63 | 95 | ```java
|
| 96 | +class Solution { |
| 97 | + private int[][] rampart; |
| 98 | + |
| 99 | + public int rampartDefensiveLine(int[][] rampart) { |
| 100 | + this.rampart = rampart; |
| 101 | + int left = 0, right = rampart[1][0] - rampart[0][1] + rampart[2][0] - rampart[1][1]; |
| 102 | + while (left < right) { |
| 103 | + int mid = (left + right + 1) >> 1; |
| 104 | + if (check(mid)) { |
| 105 | + left = mid; |
| 106 | + } else { |
| 107 | + right = mid - 1; |
| 108 | + } |
| 109 | + } |
| 110 | + return left; |
| 111 | + } |
| 112 | + |
| 113 | + private boolean check(int w) { |
| 114 | + int last = rampart[0][1]; |
| 115 | + for (int i = 1; i < rampart.length - 1; ++i) { |
| 116 | + int x = rampart[i][0], y = rampart[i][1]; |
| 117 | + int a = x - last; |
| 118 | + int b = Math.max(w - a, 0); |
| 119 | + if (y + b > rampart[i + 1][0]) { |
| 120 | + return false; |
| 121 | + } |
| 122 | + last = y + b; |
| 123 | + } |
| 124 | + return true; |
| 125 | + } |
| 126 | +} |
| 127 | +``` |
| 128 | + |
| 129 | +### **C++** |
| 130 | + |
| 131 | +```cpp |
| 132 | +class Solution { |
| 133 | +public: |
| 134 | + int rampartDefensiveLine(vector<vector<int>>& rampart) { |
| 135 | + int left = 0, right = rampart[1][0] - rampart[0][1] + rampart[2][0] - rampart[1][1]; |
| 136 | + auto check = [&](int w) { |
| 137 | + int last = rampart[0][1]; |
| 138 | + for (int i = 1; i < rampart.size() - 1; ++i) { |
| 139 | + int x = rampart[i][0], y = rampart[i][1]; |
| 140 | + int a = x - last; |
| 141 | + int b = max(w - a, 0); |
| 142 | + if (y + b > rampart[i + 1][0]) { |
| 143 | + return false; |
| 144 | + } |
| 145 | + last = y + b; |
| 146 | + } |
| 147 | + return true; |
| 148 | + }; |
| 149 | + |
| 150 | + while (left < right) { |
| 151 | + int mid = (left + right + 1) >> 1; |
| 152 | + if (check(mid)) { |
| 153 | + left = mid; |
| 154 | + } else { |
| 155 | + right = mid - 1; |
| 156 | + } |
| 157 | + } |
| 158 | + return left; |
| 159 | + } |
| 160 | +}; |
| 161 | +``` |
| 162 | + |
| 163 | +### **Go** |
| 164 | + |
| 165 | +```go |
| 166 | +func rampartDefensiveLine(rampart [][]int) int { |
| 167 | + check := func(w int) bool { |
| 168 | + last := rampart[0][1] |
| 169 | + for i := 1; i < len(rampart)-1; i++ { |
| 170 | + x, y := rampart[i][0], rampart[i][1] |
| 171 | + a := x - last |
| 172 | + b := max(w-a, 0) |
| 173 | + if y+b > rampart[i+1][0] { |
| 174 | + return false |
| 175 | + } |
| 176 | + last = y + b |
| 177 | + } |
| 178 | + return true |
| 179 | + } |
| 180 | + |
| 181 | + left, right := 0, rampart[1][0]-rampart[0][1]+rampart[2][0]-rampart[1][1] |
| 182 | + for left < right { |
| 183 | + mid := (left + right + 1) >> 1 |
| 184 | + if check(mid) { |
| 185 | + left = mid |
| 186 | + } else { |
| 187 | + right = mid - 1 |
| 188 | + } |
| 189 | + } |
| 190 | + return left |
| 191 | +} |
| 192 | + |
| 193 | +func max(a, b int) int { |
| 194 | + if a > b { |
| 195 | + return a |
| 196 | + } |
| 197 | + return b |
| 198 | +} |
| 199 | +``` |
64 | 200 |
|
| 201 | +### **TypeScript** |
| 202 | + |
| 203 | +```ts |
| 204 | +function rampartDefensiveLine(rampart: number[][]): number { |
| 205 | + const check = (w: number): boolean => { |
| 206 | + let last = rampart[0][1]; |
| 207 | + for (let i = 1; i < rampart.length - 1; ++i) { |
| 208 | + const [x, y] = rampart[i]; |
| 209 | + const a = x - last; |
| 210 | + const b = Math.max(w - a, 0); |
| 211 | + if (y + b > rampart[i + 1][0]) { |
| 212 | + return false; |
| 213 | + } |
| 214 | + last = y + b; |
| 215 | + } |
| 216 | + return true; |
| 217 | + }; |
| 218 | + let left = 0; |
| 219 | + let right = rampart[1][0] - rampart[0][1] + rampart[2][0] - rampart[1][1]; |
| 220 | + while (left < right) { |
| 221 | + const mid = (left + right + 1) >> 1; |
| 222 | + if (check(mid)) { |
| 223 | + left = mid; |
| 224 | + } else { |
| 225 | + right = mid - 1; |
| 226 | + } |
| 227 | + } |
| 228 | + return left; |
| 229 | +} |
65 | 230 | ```
|
66 | 231 |
|
67 | 232 | ### **...**
|
|
0 commit comments