83
83
``` python
84
84
class Solution :
85
85
def minimumSize (self , nums : List[int ], maxOperations : int ) -> int :
86
- def f ( x ) :
87
- return sum ((v - 1 ) // x for v in nums) <= maxOperations
86
+ def check ( mx : int ) -> bool :
87
+ return sum ((x - 1 ) // mx for x in nums) <= maxOperations
88
88
89
- return bisect_left(range (1 , max (nums) + 1 ), True , key = f ) + 1
89
+ return bisect_left(range (1 , max (nums)), True , key = check ) + 1
90
90
```
91
91
92
92
### ** Java**
@@ -96,14 +96,17 @@ class Solution:
96
96
``` java
97
97
class Solution {
98
98
public int minimumSize (int [] nums , int maxOperations ) {
99
- int left = 1 , right = (int ) 1e9 ;
99
+ int left = 1 , right = 0 ;
100
+ for (int x : nums) {
101
+ right = Math . max(right, x);
102
+ }
100
103
while (left < right) {
101
- int mid = (left + right) >>> 1 ;
102
- long s = 0 ;
103
- for (int v : nums) {
104
- s += (v - 1 ) / mid;
104
+ int mid = (left + right) >> 1 ;
105
+ long cnt = 0 ;
106
+ for (int x : nums) {
107
+ cnt += (x - 1 ) / mid;
105
108
}
106
- if (s <= maxOperations) {
109
+ if (cnt <= maxOperations) {
107
110
right = mid;
108
111
} else {
109
112
left = mid + 1 ;
@@ -122,11 +125,16 @@ public:
122
125
int minimumSize(vector<int >& nums, int maxOperations) {
123
126
int left = 1, right = * max_element(nums.begin(), nums.end());
124
127
while (left < right) {
125
- int mid = left + right >> 1;
126
- long s = 0;
127
- for (int v : nums) s += (v - 1) / mid;
128
- if (s <= maxOperations) right = mid;
129
- else left = mid + 1;
128
+ int mid = (left + right) >> 1;
129
+ long long cnt = 0;
130
+ for (int x : nums) {
131
+ cnt += (x - 1) / mid;
132
+ }
133
+ if (cnt <= maxOperations) {
134
+ right = mid;
135
+ } else {
136
+ left = mid + 1;
137
+ }
130
138
}
131
139
return left;
132
140
}
@@ -137,15 +145,26 @@ public:
137
145
138
146
```go
139
147
func minimumSize(nums []int, maxOperations int) int {
140
- return 1 + sort.Search(1e9, func(x int) bool {
141
- x++
142
- s := 0
143
- for _, v := range nums {
144
- s += (v - 1) / x
148
+ r := 0
149
+ for _, x := range nums {
150
+ r = max(r, x)
151
+ }
152
+ return 1 + sort.Search(r, func(mx int) bool {
153
+ mx++
154
+ cnt := 0
155
+ for _, x := range nums {
156
+ cnt += (x - 1) / mx
145
157
}
146
- return s <= maxOperations
158
+ return cnt <= maxOperations
147
159
})
148
160
}
161
+
162
+ func max(a, b int) int {
163
+ if a > b {
164
+ return a
165
+ }
166
+ return b
167
+ }
149
168
```
150
169
151
170
### ** JavaScript**
@@ -158,14 +177,14 @@ func minimumSize(nums []int, maxOperations int) int {
158
177
*/
159
178
var minimumSize = function (nums , maxOperations ) {
160
179
let left = 1 ;
161
- let right = 1e9 ;
180
+ let right = Math . max ( ... nums) ;
162
181
while (left < right) {
163
182
const mid = (left + right) >> 1 ;
164
- let s = 0 ;
165
- for (const v of nums) {
166
- s += Math . floor ((v - 1 ) / mid);
183
+ let cnt = 0 ;
184
+ for (const x of nums) {
185
+ cnt += ~~ ((x - 1 ) / mid);
167
186
}
168
- if (s <= maxOperations) {
187
+ if (cnt <= maxOperations) {
169
188
right = mid;
170
189
} else {
171
190
left = mid + 1 ;
@@ -175,6 +194,28 @@ var minimumSize = function (nums, maxOperations) {
175
194
};
176
195
```
177
196
197
+ ### ** TypeScript**
198
+
199
+ ``` ts
200
+ function minimumSize(nums : number [], maxOperations : number ): number {
201
+ let left = 1 ;
202
+ let right = Math .max (... nums );
203
+ while (left < right ) {
204
+ const mid = (left + right ) >> 1 ;
205
+ let cnt = 0 ;
206
+ for (const x of nums ) {
207
+ cnt += ~~ ((x - 1 ) / mid );
208
+ }
209
+ if (cnt <= maxOperations ) {
210
+ right = mid ;
211
+ } else {
212
+ left = mid + 1 ;
213
+ }
214
+ }
215
+ return left ;
216
+ }
217
+ ```
218
+
178
219
### ** ...**
179
220
180
221
```
0 commit comments