|
61 | 61 |
|
62 | 62 | <!-- 这里可写通用的实现逻辑 -->
|
63 | 63 |
|
| 64 | +**方法一:动态规划** |
| 65 | + |
| 66 | +设 $dp[i]$ 表示到达位置 $i$ 的最短指令序列的长度。答案为 $dp[target]$。 |
| 67 | + |
| 68 | +对于任意位置 $i$,都有 $2^{k-1} \leq i \lt 2^k$,并且我们可以有三种方式到达位置 $i$: |
| 69 | + |
| 70 | +- 如果 $i$ 等于 $2^k-1$,那么我们可以直接执行 $k$ 个 `A` 指令到达位置 $i$,此时 $dp[i] = k$; |
| 71 | +- 否则,我们可以先执行 $k$ 个 `A` 指令到达位置 $2^k-1$,然后执行 `R` 指令,剩余距离为 $2^k-1-i$,此时 $dp[i] = dp[2^k-1-i] + k + 1$;我们也可以先执行 $k-1$ 个 `A` 指令到达位置 $2^{k-1}-1$,然后执行 `R` 指令,接着执行 $j$(其中 $0 \le j \lt k$) 个 `A`,再执行 `R`,剩余距离为 $i - 2^{k-1} + 2^j$,此时 $dp[i] = dp[i - 2^{k-1} + 2^j] + k - 1 + j + 2$。求出 $dp[i]$ 的最小值即可。 |
| 72 | + |
| 73 | +时间复杂度 $O(n \log n)$,其中 $n$ 为 $target$。 |
| 74 | + |
64 | 75 | <!-- tabs:start -->
|
65 | 76 |
|
66 | 77 | ### **Python3**
|
67 | 78 |
|
68 | 79 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
69 | 80 |
|
70 | 81 | ```python
|
71 |
| - |
| 82 | +class Solution: |
| 83 | + def racecar(self, target: int) -> int: |
| 84 | + dp = [0] * (target + 1) |
| 85 | + for i in range(1, target + 1): |
| 86 | + k = i.bit_length() |
| 87 | + if i == 2**k - 1: |
| 88 | + dp[i] = k |
| 89 | + continue |
| 90 | + dp[i] = dp[2**k - 1 - i] + k + 1 |
| 91 | + for j in range(k - 1): |
| 92 | + dp[i] = min(dp[i], dp[i - (2 ** (k - 1) - 2**j)] + k - 1 + j + 2) |
| 93 | + return dp[target] |
72 | 94 | ```
|
73 | 95 |
|
74 | 96 | ### **Java**
|
75 | 97 |
|
76 | 98 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
77 | 99 |
|
78 | 100 | ```java
|
| 101 | +class Solution { |
| 102 | + public int racecar(int target) { |
| 103 | + int[] dp = new int[target + 1]; |
| 104 | + for (int i = 1; i <= target; ++i) { |
| 105 | + int k = 32 - Integer.numberOfLeadingZeros(i); |
| 106 | + if (i == (1 << k) - 1) { |
| 107 | + dp[i] = k; |
| 108 | + continue; |
| 109 | + } |
| 110 | + dp[i] = dp[(1 << k) - 1 - i] + k + 1; |
| 111 | + for (int j = 0; j < k; ++j) { |
| 112 | + dp[i] = Math.min(dp[i], dp[i - (1 << (k - 1)) + (1 << j)] + k - 1 + j + 2); |
| 113 | + } |
| 114 | + } |
| 115 | + return dp[target]; |
| 116 | + } |
| 117 | +} |
| 118 | +``` |
| 119 | + |
| 120 | +### **C++** |
| 121 | + |
| 122 | +```cpp |
| 123 | +class Solution { |
| 124 | +public: |
| 125 | + int racecar(int target) { |
| 126 | + vector<int> dp(target + 1); |
| 127 | + for (int i = 1; i <= target; ++i) { |
| 128 | + int k = 32 - __builtin_clz(i); |
| 129 | + if (i == (1 << k) - 1) { |
| 130 | + dp[i] = k; |
| 131 | + continue; |
| 132 | + } |
| 133 | + dp[i] = dp[(1 << k) - 1 - i] + k + 1; |
| 134 | + for (int j = 0; j < k; ++j) { |
| 135 | + dp[i] = min(dp[i], dp[i - (1 << (k - 1)) + (1 << j)] + k - 1 + j + 2); |
| 136 | + } |
| 137 | + } |
| 138 | + return dp[target]; |
| 139 | + } |
| 140 | +}; |
| 141 | +``` |
79 | 142 |
|
| 143 | +### **Go** |
| 144 | +
|
| 145 | +```go |
| 146 | +func racecar(target int) int { |
| 147 | + dp := make([]int, target+1) |
| 148 | + for i := 1; i <= target; i++ { |
| 149 | + k := bits.Len(uint(i)) |
| 150 | + if i == (1<<k)-1 { |
| 151 | + dp[i] = k |
| 152 | + continue |
| 153 | + } |
| 154 | + dp[i] = dp[(1<<k)-1-i] + k + 1 |
| 155 | + for j := 0; j < k; j++ { |
| 156 | + dp[i] = min(dp[i], dp[i-(1<<(k-1))+(1<<j)]+k-1+j+2) |
| 157 | + } |
| 158 | + } |
| 159 | + return dp[target] |
| 160 | +} |
| 161 | +
|
| 162 | +func min(a, b int) int { |
| 163 | + if a < b { |
| 164 | + return a |
| 165 | + } |
| 166 | + return b |
| 167 | +} |
80 | 168 | ```
|
81 | 169 |
|
82 | 170 | ### **...**
|
|
0 commit comments