Skip to content

Commit 3407664

Browse files
authored
feat: add solutions to lc problem: No.312 (#3079)
No.312.Burst Balloons
1 parent 1419502 commit 3407664

File tree

8 files changed

+278
-176
lines changed

8 files changed

+278
-176
lines changed

solution/0300-0399/0312.Burst Balloons/README.md

+100-59
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,23 @@ coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167</pre>
5656

5757
<!-- solution:start -->
5858

59-
### 方法一
59+
### 方法一:动态规划
60+
61+
我们记数组 $nums$ 的长度为 $n$。根据题目描述,我们可以在数组 $nums$ 的左右两端各添加一个 $1$,记为 $arr$。
62+
63+
然后,我们定义 $f[i][j]$ 表示戳破区间 $[i, j]$ 内的所有气球能得到的最多硬币数,那么答案即为 $f[0][n+1]$。
64+
65+
对于 $f[i][j]$,我们枚举区间 $[i, j]$ 内的所有位置 $k$,假设 $k$ 是最后一个戳破的气球,那么我们可以得到如下状态转移方程:
66+
67+
$$
68+
f[i][j] = \max(f[i][j], f[i][k] + f[k][j] + arr[i] \times arr[k] \times arr[j])
69+
$$
70+
71+
在实现上,由于 $f[i][j]$ 的状态转移方程中涉及到 $f[i][k]$ 和 $f[k][j]$,其中 $i < k < j$,因此我们需要从大到小地遍历 $i$,从小到大地遍历 $j$,这样才能保证当计算 $f[i][j]$ 时 $f[i][k]$ 和 $f[k][j]$ 已经被计算出来。
72+
73+
最后,我们返回 $f[0][n+1]$ 即可。
74+
75+
时间复杂度 $O(n^3)$,空间复杂度 $O(n^2)$。其中 $n$ 为数组 $nums$ 的长度。
6076

6177
<!-- tabs:start -->
6278

@@ -65,40 +81,35 @@ coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167</pre>
6581
```python
6682
class Solution:
6783
def maxCoins(self, nums: List[int]) -> int:
68-
nums = [1] + nums + [1]
6984
n = len(nums)
70-
dp = [[0] * n for _ in range(n)]
71-
for l in range(2, n):
72-
for i in range(n - l):
73-
j = i + l
85+
arr = [1] + nums + [1]
86+
f = [[0] * (n + 2) for _ in range(n + 2)]
87+
for i in range(n - 1, -1, -1):
88+
for j in range(i + 2, n + 2):
7489
for k in range(i + 1, j):
75-
dp[i][j] = max(
76-
dp[i][j], dp[i][k] + dp[k][j] + nums[i] * nums[k] * nums[j]
77-
)
78-
return dp[0][-1]
90+
f[i][j] = max(f[i][j], f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j])
91+
return f[0][-1]
7992
```
8093

8194
#### Java
8295

8396
```java
8497
class Solution {
8598
public int maxCoins(int[] nums) {
86-
int[] vals = new int[nums.length + 2];
87-
vals[0] = 1;
88-
vals[vals.length - 1] = 1;
89-
System.arraycopy(nums, 0, vals, 1, nums.length);
90-
int n = vals.length;
91-
int[][] dp = new int[n][n];
92-
for (int l = 2; l < n; ++l) {
93-
for (int i = 0; i + l < n; ++i) {
94-
int j = i + l;
95-
for (int k = i + 1; k < j; ++k) {
96-
dp[i][j]
97-
= Math.max(dp[i][j], dp[i][k] + dp[k][j] + vals[i] * vals[k] * vals[j]);
99+
int n = nums.length;
100+
int[] arr = new int[n + 2];
101+
arr[0] = 1;
102+
arr[n + 1] = 1;
103+
System.arraycopy(nums, 0, arr, 1, n);
104+
int[][] f = new int[n + 2][n + 2];
105+
for (int i = n - 1; i >= 0; i--) {
106+
for (int j = i + 2; j <= n + 1; j++) {
107+
for (int k = i + 1; k < j; k++) {
108+
f[i][j] = Math.max(f[i][j], f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j]);
98109
}
99110
}
100111
}
101-
return dp[0][n - 1];
112+
return f[0][n + 1];
102113
}
103114
}
104115
```
@@ -109,19 +120,21 @@ class Solution {
109120
class Solution {
110121
public:
111122
int maxCoins(vector<int>& nums) {
112-
nums.insert(nums.begin(), 1);
113-
nums.push_back(1);
114123
int n = nums.size();
115-
vector<vector<int>> dp(n, vector<int>(n));
116-
for (int l = 2; l < n; ++l) {
117-
for (int i = 0; i + l < n; ++i) {
118-
int j = i + l;
124+
vector<int> arr(n + 2, 1);
125+
for (int i = 0; i < n; ++i) {
126+
arr[i + 1] = nums[i];
127+
}
128+
129+
vector<vector<int>> f(n + 2, vector<int>(n + 2, 0));
130+
for (int i = n - 1; i >= 0; --i) {
131+
for (int j = i + 2; j <= n + 1; ++j) {
119132
for (int k = i + 1; k < j; ++k) {
120-
dp[i][j] = max(dp[i][j], dp[i][k] + dp[k][j] + nums[i] * nums[k] * nums[j]);
133+
f[i][j] = max(f[i][j], f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j]);
121134
}
122135
}
123136
}
124-
return dp[0][n - 1];
137+
return f[0][n + 1];
125138
}
126139
};
127140
```
@@ -130,44 +143,72 @@ public:
130143

131144
```go
132145
func maxCoins(nums []int) int {
133-
vals := make([]int, len(nums)+2)
134-
for i := 0; i < len(nums); i++ {
135-
vals[i+1] = nums[i]
136-
}
137-
n := len(vals)
138-
vals[0], vals[n-1] = 1, 1
139-
dp := make([][]int, n)
140-
for i := 0; i < n; i++ {
141-
dp[i] = make([]int, n)
142-
}
143-
for l := 2; l < n; l++ {
144-
for i := 0; i+l < n; i++ {
145-
j := i + l
146-
for k := i + 1; k < j; k++ {
147-
dp[i][j] = max(dp[i][j], dp[i][k]+dp[k][j]+vals[i]*vals[k]*vals[j])
148-
}
149-
}
150-
}
151-
return dp[0][n-1]
146+
n := len(nums)
147+
arr := make([]int, n+2)
148+
arr[0] = 1
149+
arr[n+1] = 1
150+
copy(arr[1:], nums)
151+
152+
f := make([][]int, n+2)
153+
for i := range f {
154+
f[i] = make([]int, n+2)
155+
}
156+
157+
for i := n - 1; i >= 0; i-- {
158+
for j := i + 2; j <= n+1; j++ {
159+
for k := i + 1; k < j; k++ {
160+
f[i][j] = max(f[i][j], f[i][k] + f[k][j] + arr[i]*arr[k]*arr[j])
161+
}
162+
}
163+
}
164+
165+
return f[0][n+1]
152166
}
153167
```
154168

155169
#### TypeScript
156170

157171
```ts
158172
function maxCoins(nums: number[]): number {
159-
let n = nums.length;
160-
let dp = Array.from({ length: n + 1 }, v => new Array(n + 2).fill(0));
161-
nums.unshift(1);
162-
nums.push(1);
163-
for (let i = n - 1; i >= 0; --i) {
164-
for (let j = i + 2; j < n + 2; ++j) {
165-
for (let k = i + 1; k < j; ++k) {
166-
dp[i][j] = Math.max(nums[i] * nums[k] * nums[j] + dp[i][k] + dp[k][j], dp[i][j]);
173+
const n = nums.length;
174+
const arr = Array(n + 2).fill(1);
175+
for (let i = 0; i < n; i++) {
176+
arr[i + 1] = nums[i];
177+
}
178+
179+
const f: number[][] = Array.from({ length: n + 2 }, () => Array(n + 2).fill(0));
180+
for (let i = n - 1; i >= 0; i--) {
181+
for (let j = i + 2; j <= n + 1; j++) {
182+
for (let k = i + 1; k < j; k++) {
183+
f[i][j] = Math.max(f[i][j], f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j]);
184+
}
185+
}
186+
}
187+
return f[0][n + 1];
188+
}
189+
```
190+
191+
#### Rust
192+
193+
```rust
194+
impl Solution {
195+
pub fn max_coins(nums: Vec<i32>) -> i32 {
196+
let n = nums.len();
197+
let mut arr = vec![1; n + 2];
198+
for i in 0..n {
199+
arr[i + 1] = nums[i];
200+
}
201+
202+
let mut f = vec![vec![0; n + 2]; n + 2];
203+
for i in (0..n).rev() {
204+
for j in i + 2..n + 2 {
205+
for k in i + 1..j {
206+
f[i][j] = f[i][j].max(f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j]);
207+
}
167208
}
168209
}
210+
f[0][n + 1]
169211
}
170-
return dp[0][n + 1];
171212
}
172213
```
173214

0 commit comments

Comments
 (0)