|
60 | 60 |
|
61 | 61 | <!-- 这里可写通用的实现逻辑 -->
|
62 | 62 |
|
| 63 | +**方法一:状态压缩动态规划 + 子集枚举** |
| 64 | + |
| 65 | +我们先统计数组 $nums$ 中每个数字出现的次数,记录在哈希表 $cnt$ 中,然后将哈希表中的值存入数组 $arr$ 中,我们记数组 $arr$ 的长度为 $n$。 |
| 66 | + |
| 67 | +注意到数组 $quantity$ 的长度不超过 $10$,因此,我们可以用一个二进制数表示 $quantity$ 中的一个子集,即数字 $j$ 表示 $quantity$ 中的一个子集,其中 $j$ 的二进制表示中的第 $i$ 位为 $1$ 表示 $quantity$ 中的第 $i$ 个数字被选中,为 $0$ 表示第 $i$ 个数字未被选中。 |
| 68 | + |
| 69 | +我们可以预处理出数组 $s$,其中 $s[j]$ 表示 $quantity$ 中子集 $j$ 中所有数字的和。 |
| 70 | + |
| 71 | +接下来,我们定义 $f[i][j]$ 表示数组 $arr[0,..i-1]$ 中的数字能否成功分配给 $quantity$ 中的子集 $j$,其中 $i$ 的取值范围为 $[0,..n-1]$,而 $j$ 的取值范围为 $[0,2^m-1]$,其中 $m$ 为 $quantity$ 的长度。 |
| 72 | + |
| 73 | +考虑 $f[i][j]$,如果子集 $j$ 中存在一个子集 $k$,使得 $s[k] \leq arr[i]$,并且 $f[i-1][j \oplus k]$ 为真,那么 $f[i][j]$ 为真,否则 $f[i][j]$ 为假。 |
| 74 | + |
| 75 | +答案为 $f[n-1][2^m-1]$。 |
| 76 | + |
| 77 | +时间复杂度 $O(n \times 3^m)$,空间复杂度 $O(n \times 2^m)$。其中 $n$ 是数组 $nums$ 中不同整数的个数;而 $m$ 是数组 $quantity$ 的长度。 |
| 78 | + |
63 | 79 | <!-- tabs:start -->
|
64 | 80 |
|
65 | 81 | ### **Python3**
|
66 | 82 |
|
67 | 83 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
68 | 84 |
|
69 | 85 | ```python
|
70 |
| - |
| 86 | +class Solution: |
| 87 | + def canDistribute(self, nums: List[int], quantity: List[int]) -> bool: |
| 88 | + m = len(quantity) |
| 89 | + s = [0] * (1 << m) |
| 90 | + for i in range(1, 1 << m): |
| 91 | + for j in range(m): |
| 92 | + if i >> j & 1: |
| 93 | + s[i] = s[i ^ (1 << j)] + quantity[j] |
| 94 | + break |
| 95 | + cnt = Counter(nums) |
| 96 | + arr = list(cnt.values()) |
| 97 | + n = len(arr) |
| 98 | + f = [[False] * (1 << m) for _ in range(n)] |
| 99 | + for i in range(n): |
| 100 | + f[i][0] = True |
| 101 | + for i, x in enumerate(arr): |
| 102 | + for j in range(1, 1 << m): |
| 103 | + if i and f[i - 1][j]: |
| 104 | + f[i][j] = True |
| 105 | + continue |
| 106 | + k = j |
| 107 | + while k: |
| 108 | + ok1 = j == k if i == 0 else f[i - 1][j ^ k] |
| 109 | + ok2 = s[k] <= x |
| 110 | + if ok1 and ok2: |
| 111 | + f[i][j] = True |
| 112 | + break |
| 113 | + k = (k - 1) & j |
| 114 | + return f[-1][-1] |
71 | 115 | ```
|
72 | 116 |
|
73 | 117 | ### **Java**
|
74 | 118 |
|
75 | 119 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
76 | 120 |
|
77 | 121 | ```java
|
| 122 | +class Solution { |
| 123 | + public boolean canDistribute(int[] nums, int[] quantity) { |
| 124 | + int m = quantity.length; |
| 125 | + int[] s = new int[1 << m]; |
| 126 | + for (int i = 1; i < 1 << m; ++i) { |
| 127 | + for (int j = 0; j < m; ++j) { |
| 128 | + if ((i >> j & 1) != 0) { |
| 129 | + s[i] = s[i ^ (1 << j)] + quantity[j]; |
| 130 | + break; |
| 131 | + } |
| 132 | + } |
| 133 | + } |
| 134 | + Map<Integer, Integer> cnt = new HashMap<>(50); |
| 135 | + for (int x : nums) { |
| 136 | + cnt.merge(x, 1, Integer::sum); |
| 137 | + } |
| 138 | + int n = cnt.size(); |
| 139 | + int[] arr = new int[n]; |
| 140 | + int i = 0; |
| 141 | + for (int x : cnt.values()) { |
| 142 | + arr[i++] = x; |
| 143 | + } |
| 144 | + boolean[][] f = new boolean[n][1 << m]; |
| 145 | + for (i = 0; i < n; ++i) { |
| 146 | + f[i][0] = true; |
| 147 | + } |
| 148 | + for (i = 0; i < n; ++i) { |
| 149 | + for (int j = 1; j < 1 << m; ++j) { |
| 150 | + if (i > 0 && f[i - 1][j]) { |
| 151 | + f[i][j] = true; |
| 152 | + continue; |
| 153 | + } |
| 154 | + for (int k = j; k > 0; k = (k - 1) & j) { |
| 155 | + boolean ok1 = i == 0 ? j == k : f[i - 1][j ^ k]; |
| 156 | + boolean ok2 = s[k] <= arr[i]; |
| 157 | + if (ok1 && ok2) { |
| 158 | + f[i][j] = true; |
| 159 | + break; |
| 160 | + } |
| 161 | + } |
| 162 | + } |
| 163 | + } |
| 164 | + return f[n - 1][(1 << m) - 1]; |
| 165 | + } |
| 166 | +} |
| 167 | +``` |
| 168 | + |
| 169 | +### **C++** |
| 170 | + |
| 171 | +```cpp |
| 172 | +class Solution { |
| 173 | +public: |
| 174 | + bool canDistribute(vector<int>& nums, vector<int>& quantity) { |
| 175 | + int m = quantity.size(); |
| 176 | + int s[1 << m]; |
| 177 | + memset(s, 0, sizeof(s)); |
| 178 | + for (int i = 1; i < 1 << m; ++i) { |
| 179 | + for (int j = 0; j < m; ++j) { |
| 180 | + if (i >> j & 1) { |
| 181 | + s[i] = s[i ^ (1 << j)] + quantity[j]; |
| 182 | + break; |
| 183 | + } |
| 184 | + } |
| 185 | + } |
| 186 | + unordered_map<int, int> cnt; |
| 187 | + for (int& x : nums) { |
| 188 | + ++cnt[x]; |
| 189 | + } |
| 190 | + int n = cnt.size(); |
| 191 | + vector<int> arr; |
| 192 | + for (auto& [_, x] : cnt) { |
| 193 | + arr.push_back(x); |
| 194 | + } |
| 195 | + bool f[n][1 << m]; |
| 196 | + memset(f, 0, sizeof(f)); |
| 197 | + for (int i = 0; i < n; ++i) { |
| 198 | + f[i][0] = true; |
| 199 | + } |
| 200 | + for (int i = 0; i < n; ++i) { |
| 201 | + for (int j = 1; j < 1 << m; ++j) { |
| 202 | + if (i && f[i - 1][j]) { |
| 203 | + f[i][j] = true; |
| 204 | + continue; |
| 205 | + } |
| 206 | + for (int k = j; k; k = (k - 1) & j) { |
| 207 | + bool ok1 = i == 0 ? j == k : f[i - 1][j ^ k]; |
| 208 | + bool ok2 = s[k] <= arr[i]; |
| 209 | + if (ok1 && ok2) { |
| 210 | + f[i][j] = true; |
| 211 | + break; |
| 212 | + } |
| 213 | + } |
| 214 | + } |
| 215 | + } |
| 216 | + return f[n - 1][(1 << m) - 1]; |
| 217 | + } |
| 218 | +}; |
| 219 | +``` |
| 220 | +
|
| 221 | +### **Go** |
| 222 | +
|
| 223 | +```go |
| 224 | +func canDistribute(nums []int, quantity []int) bool { |
| 225 | + m := len(quantity) |
| 226 | + s := make([]int, 1<<m) |
| 227 | + for i := 1; i < 1<<m; i++ { |
| 228 | + for j := 0; j < m; j++ { |
| 229 | + if i>>j&1 == 1 { |
| 230 | + s[i] = s[i^(1<<j)] + quantity[j] |
| 231 | + break |
| 232 | + } |
| 233 | + } |
| 234 | + } |
| 235 | + cnt := map[int]int{} |
| 236 | + for _, x := range nums { |
| 237 | + cnt[x]++ |
| 238 | + } |
| 239 | + n := len(cnt) |
| 240 | + arr := make([]int, 0, n) |
| 241 | + for _, x := range cnt { |
| 242 | + arr = append(arr, x) |
| 243 | + } |
| 244 | + f := make([][]bool, n) |
| 245 | + for i := range f { |
| 246 | + f[i] = make([]bool, 1<<m) |
| 247 | + f[i][0] = true |
| 248 | + } |
| 249 | + for i := 0; i < n; i++ { |
| 250 | + for j := 0; j < 1<<m; j++ { |
| 251 | + if i > 0 && f[i-1][j] { |
| 252 | + f[i][j] = true |
| 253 | + continue |
| 254 | + } |
| 255 | + for k := j; k > 0; k = (k - 1) & j { |
| 256 | + ok1 := (i == 0 && j == k) || (i > 0 && f[i-1][j-k]) |
| 257 | + ok2 := s[k] <= arr[i] |
| 258 | + if ok1 && ok2 { |
| 259 | + f[i][j] = true |
| 260 | + break |
| 261 | + } |
| 262 | + } |
| 263 | + } |
| 264 | + } |
| 265 | + return f[n-1][(1<<m)-1] |
| 266 | +} |
| 267 | +``` |
| 268 | + |
| 269 | +### **TypeScript** |
78 | 270 |
|
| 271 | +```ts |
| 272 | +function canDistribute(nums: number[], quantity: number[]): boolean { |
| 273 | + const m = quantity.length; |
| 274 | + const s: number[] = new Array(1 << m).fill(0); |
| 275 | + for (let i = 1; i < 1 << m; ++i) { |
| 276 | + for (let j = 0; j < m; ++j) { |
| 277 | + if ((i >> j) & 1) { |
| 278 | + s[i] = s[i ^ (1 << j)] + quantity[j]; |
| 279 | + break; |
| 280 | + } |
| 281 | + } |
| 282 | + } |
| 283 | + const cnt: Map<number, number> = new Map(); |
| 284 | + for (const x of nums) { |
| 285 | + cnt.set(x, (cnt.get(x) || 0) + 1); |
| 286 | + } |
| 287 | + const n = cnt.size; |
| 288 | + const arr: number[] = []; |
| 289 | + for (const [_, v] of cnt) { |
| 290 | + arr.push(v); |
| 291 | + } |
| 292 | + const f: boolean[][] = new Array(n) |
| 293 | + .fill(false) |
| 294 | + .map(() => new Array(1 << m).fill(false)); |
| 295 | + for (let i = 0; i < n; ++i) { |
| 296 | + f[i][0] = true; |
| 297 | + } |
| 298 | + for (let i = 0; i < n; ++i) { |
| 299 | + for (let j = 0; j < 1 << m; ++j) { |
| 300 | + if (i > 0 && f[i - 1][j]) { |
| 301 | + f[i][j] = true; |
| 302 | + continue; |
| 303 | + } |
| 304 | + for (let k = j; k > 0; k = (k - 1) & j) { |
| 305 | + const ok1: boolean = |
| 306 | + (i == 0 && j == k) || (i > 0 && f[i - 1][j ^ k]); |
| 307 | + const ok2: boolean = s[k] <= arr[i]; |
| 308 | + if (ok1 && ok2) { |
| 309 | + f[i][j] = true; |
| 310 | + break; |
| 311 | + } |
| 312 | + } |
| 313 | + } |
| 314 | + } |
| 315 | + return f[n - 1][(1 << m) - 1]; |
| 316 | +} |
79 | 317 | ```
|
80 | 318 |
|
81 | 319 | ### **...**
|
|
0 commit comments