You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: solution/2100-2199/2116.Check if a Parentheses String Can Be Valid/README_EN.md
+51-3
Original file line number
Diff line number
Diff line change
@@ -59,7 +59,7 @@ We change s[0] and s[4] to '(' while leaving s[2] and s[5] unchanged to
59
59
<pre>
60
60
<strong>Input:</strong> s = ")", locked = "0"
61
61
<strong>Output:</strong> false
62
-
<strong>Explanation:</strong> locked permits us to change s[0].
62
+
<strong>Explanation:</strong> locked permits us to change s[0].
63
63
Changing s[0] to either '(' or ')' will not make s valid.
64
64
</pre>
65
65
@@ -68,7 +68,7 @@ Changing s[0] to either '(' or ')' will not make s valid.
68
68
<pre>
69
69
<strong>Input:</strong> s = "(((())(((())", locked = "111111010111"
70
70
<strong>Output:</strong> false
71
-
<strong>Explanation:</strong> locked permits us to change s[6] and s[8].
71
+
<strong>Explanation:</strong> locked permits us to change s[6] and s[8].
72
72
We change s[6] and s[8] to ')' to make s valid.
73
73
</pre>
74
74
@@ -88,7 +88,23 @@ We change s[6] and s[8] to ')' to make s valid.
88
88
89
89
<!-- solution:start -->
90
90
91
-
### Solution 1
91
+
### Solution 1: Greedy + Two Passes
92
+
93
+
We observe that a string of odd length cannot be a valid parentheses string because there will always be one unmatched parenthesis. Therefore, if the length of the string $s$ is odd, return $\textit{false}$ immediately.
94
+
95
+
Next, we perform two passes.
96
+
97
+
The first pass goes from left to right, checking if all `'('` parentheses can be matched by `')'` or changeable parentheses. If not, return $\textit{false}$.
98
+
99
+
The second pass goes from right to left, checking if all `')'` parentheses can be matched by `'('` or changeable parentheses. If not, return $\textit{false}$.
100
+
101
+
If both passes complete successfully, it means all parentheses can be matched, and the string $s$ is a valid parentheses string. Return $\textit{true}$.
102
+
103
+
The time complexity is $O(n)$, where $n$ is the length of the string $s$. The space complexity is $O(1)$.
0 commit comments