comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
Hard |
2060 |
Biweekly Contest 104 Q4 |
|
You are given a 0-indexed integer array nums
representing the strength of some heroes. The power of a group of heroes is defined as follows:
- Let
i0
,i1
, ... ,ik
be the indices of the heroes in a group. Then, the power of this group ismax(nums[i0], nums[i1], ... ,nums[ik])2 * min(nums[i0], nums[i1], ... ,nums[ik])
.
Return the sum of the power of all non-empty groups of heroes possible. Since the sum could be very large, return it modulo 109 + 7
.
Example 1:
Input: nums = [2,1,4] Output: 141 Explanation: 1st group: [2] has power = 22 * 2 = 8. 2nd group: [1] has power = 12 * 1 = 1. 3rd group: [4] has power = 42 * 4 = 64. 4th group: [2,1] has power = 22 * 1 = 4. 5th group: [2,4] has power = 42 * 2 = 32. 6th group: [1,4] has power = 42 * 1 = 16. 7th group: [2,1,4] has power = 42 * 1 = 16. The sum of powers of all groups is 8 + 1 + 64 + 4 + 32 + 16 + 16 = 141.
Example 2:
Input: nums = [1,1,1] Output: 7 Explanation: A total of 7 groups are possible, and the power of each group will be 1. Therefore, the sum of the powers of all groups is 7.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
We notice that the problem involves the maximum and minimum values of a subsequence, and the order of elements in the array does not affect the final result. Therefore, we can sort the array first.
Next, we enumerate each element as the minimum value of the subsequence. Let's denote each element of the array as
We notice that each
Then, we enumerate
After enumerating all
The time complexity is
class Solution:
def sumOfPower(self, nums: List[int]) -> int:
mod = 10**9 + 7
nums.sort()
ans = 0
p = 0
for x in nums[::-1]:
ans = (ans + (x * x % mod) * x) % mod
ans = (ans + x * p) % mod
p = (p * 2 + x * x) % mod
return ans
class Solution {
public int sumOfPower(int[] nums) {
final int mod = (int) 1e9 + 7;
Arrays.sort(nums);
long ans = 0, p = 0;
for (int i = nums.length - 1; i >= 0; --i) {
long x = nums[i];
ans = (ans + (x * x % mod) * x) % mod;
ans = (ans + x * p % mod) % mod;
p = (p * 2 + x * x % mod) % mod;
}
return (int) ans;
}
}
class Solution {
public:
int sumOfPower(vector<int>& nums) {
const int mod = 1e9 + 7;
sort(nums.rbegin(), nums.rend());
long long ans = 0, p = 0;
for (long long x : nums) {
ans = (ans + (x * x % mod) * x) % mod;
ans = (ans + x * p % mod) % mod;
p = (p * 2 + x * x % mod) % mod;
}
return ans;
}
};
func sumOfPower(nums []int) (ans int) {
const mod = 1e9 + 7
sort.Ints(nums)
p := 0
for i := len(nums) - 1; i >= 0; i-- {
x := nums[i]
ans = (ans + (x*x%mod)*x) % mod
ans = (ans + x*p%mod) % mod
p = (p*2 + x*x%mod) % mod
}
return
}
function sumOfPower(nums: number[]): number {
const mod = 10 ** 9 + 7;
nums.sort((a, b) => a - b);
let ans = 0;
let p = 0;
for (let i = nums.length - 1; i >= 0; --i) {
const x = BigInt(nums[i]);
ans = (ans + Number((x * x * x) % BigInt(mod))) % mod;
ans = (ans + Number((x * BigInt(p)) % BigInt(mod))) % mod;
p = Number((BigInt(p) * 2n + x * x) % BigInt(mod));
}
return ans;
}