You are given a 0-indexed integer array nums
consisting of n
non-negative integers.
You are also given an array queries
, where queries[i] = [xi, yi]
. The answer to the ith
query is the sum of all nums[j]
where xi <= j < n
and (j - xi)
is divisible by yi
.
Return an array answer
where answer.length == queries.length
and answer[i]
is the answer to the ith
query modulo 109 + 7
.
Example 1:
Input: nums = [0,1,2,3,4,5,6,7], queries = [[0,3],[5,1],[4,2]] Output: [9,18,10] Explanation: The answers of the queries are as follows: 1) The j indices that satisfy this query are 0, 3, and 6. nums[0] + nums[3] + nums[6] = 9 2) The j indices that satisfy this query are 5, 6, and 7. nums[5] + nums[6] + nums[7] = 18 3) The j indices that satisfy this query are 4 and 6. nums[4] + nums[6] = 10
Example 2:
Input: nums = [100,200,101,201,102,202,103,203], queries = [[0,7]] Output: [303]
Constraints:
n == nums.length
1 <= n <= 5 * 104
0 <= nums[i] <= 109
1 <= queries.length <= 1.5 * 105
0 <= xi < n
1 <= yi <= 5 * 104
class Solution:
def solve(self, nums: List[int], queries: List[List[int]]) -> List[int]:
mod = 10**9 + 7
n = len(nums)
m = int(sqrt(n))
suf = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(n - 1, -1, -1):
suf[i][j] = suf[i][min(n, j + i)] + nums[j]
ans = []
for x, y in queries:
if y <= m:
ans.append(suf[y][x] % mod)
else:
ans.append(sum(nums[x::y]) % mod)
return ans
class Solution {
public int[] solve(int[] nums, int[][] queries) {
int n = nums.length;
int m = (int) Math.sqrt(n);
final int mod = (int) 1e9 + 7;
int[][] suf = new int[m + 1][n + 1];
for (int i = 1; i <= m; ++i) {
for (int j = n - 1; j >= 0; --j) {
suf[i][j] = (suf[i][Math.min(n, j + i)] + nums[j]) % mod;
}
}
int k = queries.length;
int[] ans = new int[k];
for (int i = 0; i < k; ++i) {
int x = queries[i][0];
int y = queries[i][1];
if (y <= m) {
ans[i] = suf[y][x];
} else {
int s = 0;
for (int j = x; j < n; j += y) {
s = (s + nums[j]) % mod;
}
ans[i] = s;
}
}
return ans;
}
}
class Solution {
public:
vector<int> solve(vector<int>& nums, vector<vector<int>>& queries) {
int n = nums.size();
int m = (int) sqrt(n);
const int mod = 1e9 + 7;
int suf[m + 1][n + 1];
memset(suf, 0, sizeof(suf));
for (int i = 1; i <= m; ++i) {
for (int j = n - 1; ~j; --j) {
suf[i][j] = (suf[i][min(n, j + i)] + nums[j]) % mod;
}
}
vector<int> ans;
for (auto& q : queries) {
int x = q[0], y = q[1];
if (y <= m) {
ans.push_back(suf[y][x]);
} else {
int s = 0;
for (int i = x; i < n; i += y) {
s = (s + nums[i]) % mod;
}
ans.push_back(s);
}
}
return ans;
}
};
func solve(nums []int, queries [][]int) (ans []int) {
n := len(nums)
m := int(math.Sqrt(float64(n)))
const mod int = 1e9 + 7
suf := make([][]int, m+1)
for i := range suf {
suf[i] = make([]int, n+1)
for j := n - 1; j >= 0; j-- {
suf[i][j] = (suf[i][min(n, j+i)] + nums[j]) % mod
}
}
for _, q := range queries {
x, y := q[0], q[1]
if y <= m {
ans = append(ans, suf[y][x])
} else {
s := 0
for i := x; i < n; i += y {
s = (s + nums[i]) % mod
}
ans = append(ans, s)
}
}
return
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
function solve(nums: number[], queries: number[][]): number[] {
const n = nums.length;
const m = Math.floor(Math.sqrt(n));
const mod = 10 ** 9 + 7;
const suf: number[][] = Array(m + 1)
.fill(0)
.map(() => Array(n + 1).fill(0));
for (let i = 1; i <= m; ++i) {
for (let j = n - 1; j >= 0; --j) {
suf[i][j] = (suf[i][Math.min(n, j + i)] + nums[j]) % mod;
}
}
const ans: number[] = [];
for (const [x, y] of queries) {
if (y <= m) {
ans.push(suf[y][x]);
} else {
let s = 0;
for (let i = x; i < n; i += y) {
s = (s + nums[i]) % mod;
}
ans.push(s);
}
}
return ans;
}