Skip to content

Files

Latest commit

f385924 · Apr 29, 2022

History

History

0110.Balanced Binary Tree

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Apr 22, 2021
Apr 29, 2022
Apr 23, 2022
Nov 21, 2021
Nov 21, 2021
Nov 21, 2021
Dec 24, 2021
Feb 15, 2022
Apr 23, 2022
Apr 23, 2022

English Version

题目描述

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:

一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。

 

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:true

示例 2:

输入:root = [1,2,2,3,3,null,null,4,4]
输出:false

示例 3:

输入:root = []
输出:true

 

提示:

  • 树中的节点数在范围 [0, 5000]
  • -104 <= Node.val <= 104

解法

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def isBalanced(self, root: TreeNode) -> bool:
        def height(root):
            if root is None:
                return 0
            l, r = height(root.left), height(root.right)
            if l == -1 or r == -1 or abs(l - r) > 1:
                return -1
            return 1 + max(l, r)

        return height(root) >= 0

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isBalanced(TreeNode root) {
        return height(root) >= 0;
    }

    private int height(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int l = height(root.left);
        int r = height(root.right);
        if (l == -1 || r == -1 || Math.abs(l - r) > 1) {
            return -1;
        }
        return 1 + Math.max(l, r);
    }
}

JavaScript

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {boolean}
 */
var isBalanced = function (root) {
    let height = function (root) {
        if (root == null) {
            return 0;
        }
        const l = height(root.left);
        const r = height(root.right);
        if (l == -1 || r == -1 || Math.abs(l - r) > 1) {
            return -1;
        }
        return 1 + Math.max(l, r);
    };

    return height(root) >= 0;
};

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool isBalanced(TreeNode* root) {
        return height(root) >= 0;
    }

    int height(TreeNode* root) {
        if (!root) return 0;
        int l = height(root->left), r = height(root->right);
        if (l == -1 || r == -1 || abs(l - r) > 1) return -1;
        return 1 + max(l, r);
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func isBalanced(root *TreeNode) bool {
	return height(root) >= 0
}

func height(root *TreeNode) int {
	if root == nil {
		return 0
	}
	l, r := height(root.Left), height(root.Right)
	if l == -1 || r == -1 || abs(l-r) > 1 {
		return -1
	}
	return 1 + max(l, r)
}

func abs(x int) int {
	if x >= 0 {
		return x
	}
	return -x
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function isBalanced(root: TreeNode | null): boolean {
    const dfs = (root: TreeNode | null) => {
        if (root == null) {
            return 0;
        }
        const left = dfs(root.left);
        const right = dfs(root.right);
        if (left === -1 || right === -1 || Math.abs(left - right) > 1) {
            return -1;
        }
        return 1 + Math.max(left, right);
    };
    return dfs(root) > -1;
}

Rust

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
    pub fn is_balanced(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
        Self::dfs(&root) > -1
    }

    fn dfs(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 {
        if root.is_none() {
            return 0;
        }
        let node = root.as_ref().unwrap().borrow();
        let left = Self::dfs(&node.left);
        let right = Self::dfs(&node.right);
        if left == -1 || right == -1 || (left - right).abs() > 1 {
            return -1;
        }
        1 + left.max(right)
    }
}

...