给你一个整数 n
,请你找出所有可能含 n
个节点的 真二叉树 ,并以列表形式返回。答案中每棵树的每个节点都必须符合 Node.val == 0
。
答案的每个元素都是一棵真二叉树的根节点。你可以按 任意顺序 返回最终的真二叉树列表。
真二叉树 是一类二叉树,树中每个节点恰好有 0
或 2
个子节点。
示例 1:
输入:n = 7 输出:[[0,0,0,null,null,0,0,null,null,0,0],[0,0,0,null,null,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,null,null,null,null,0,0],[0,0,0,0,0,null,null,0,0]]
示例 2:
输入:n = 3 输出:[[0,0,0]]
提示:
1 <= n <= 20
方法一:记忆化搜索
对于
对于
此过程可以用记忆化搜索,避免重复计算。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def allPossibleFBT(self, n: int) -> List[Optional[TreeNode]]:
@cache
def dfs(n):
if n == 1:
return [TreeNode()]
res = []
if n % 2:
for i in range(n - 1):
j = n - i - 1
for left in dfs(i):
for right in dfs(j):
res.append(TreeNode(0, left, right))
return res
return dfs(n)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List<TreeNode>[] f = new List[21];
public List<TreeNode> allPossibleFBT(int n) {
return dfs(n);
}
private List<TreeNode> dfs(int n) {
if (f[n] != null) {
return f[n];
}
if (n == 1) {
return Collections.singletonList(new TreeNode());
}
List<TreeNode> res = new ArrayList<>();
for (int i = 0; i < n - 1; ++i) {
int j = n - i - 1;
for (TreeNode left : dfs(i)) {
for (TreeNode right : dfs(j)) {
res.add(new TreeNode(0, left, right));
}
}
}
f[n] = res;
return res;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<TreeNode*> allPossibleFBT(int n) {
vector<TreeNode*> f[21];
function<vector<TreeNode*>(int)> dfs = [&](int n) -> vector<TreeNode*> {
if (f[n].size()) return f[n];
if (n == 1) return vector<TreeNode*>{new TreeNode()};
vector<TreeNode*> res;
for (int i = 0; i < n - 1; ++i) {
int j = n - i - 1;
for (auto left : dfs(i)) {
for (auto right : dfs(j)) {
res.push_back(new TreeNode(0, left, right));
}
}
}
return f[n] = res;
};
return dfs(n);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func allPossibleFBT(n int) []*TreeNode {
f := map[int][]*TreeNode{}
var dfs func(n int) []*TreeNode
dfs = func(n int) []*TreeNode {
if v, ok := f[n]; ok {
return v
}
if n == 1 {
return []*TreeNode{&TreeNode{Val: 0}}
}
res := []*TreeNode{}
for i := 0; i < n-1; i++ {
j := n - i - 1
for _, left := range dfs(i) {
for _, right := range dfs(j) {
res = append(res, &TreeNode{0, left, right})
}
}
}
f[n] = res
return res
}
return dfs(n)
}