Given an array of integers numbers
that is already sorted in ascending order, find two numbers such that they add up to a specific target
number.
Return the indices of the two numbers (1-indexed) as an integer array answer
of size 2
, where 1 <= answer[0] < answer[1] <= numbers.length
.
You may assume that each input would have exactly one solution and you may not use the same element twice.
Example 1:
Input: numbers = [2,7,11,15], target = 9 Output: [1,2] Explanation: The sum of 2 and 7 is 9. Therefore index1 = 1, index2 = 2.
Example 2:
Input: numbers = [2,3,4], target = 6 Output: [1,3]
Example 3:
Input: numbers = [-1,0], target = -1 Output: [1,2]
Constraints:
2 <= numbers.length <= 3 * 104
-1000 <= numbers[i] <= 1000
numbers
is sorted in increasing order.-1000 <= target <= 1000
- Only one valid answer exists.
class Solution:
def twoSum(self, numbers: List[int], target: int) -> List[int]:
low, high = 0, len(numbers) - 1
while low <= high:
if numbers[low] + numbers[high] == target:
return [low + 1, high + 1]
if numbers[low] + numbers[high] < target:
low += 1
else:
high -= 1
return [-1, -1]
class Solution {
public int[] twoSum(int[] numbers, int target) {
int low = 0, high = numbers.length - 1;
while (low <= high) {
if (numbers[low] + numbers[high] == target) {
return new int[]{low + 1, high + 1};
}
if (numbers[low] + numbers[high] < target) {
++low;
} else {
--high;
}
}
return new int[]{-1, -1};
}
}
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target) {
int low = 0, high = numbers.size() - 1;
while (low <= high) {
if (numbers[low] + numbers[high] == target) {
return {low + 1, high + 1};
}
if (numbers[low] + numbers[high] < target) {
++low;
} else {
--high;
}
}
return {-1, -1};
}
};