Skip to content

Latest commit

 

History

History
241 lines (208 loc) · 4.85 KB

File metadata and controls

241 lines (208 loc) · 4.85 KB

中文文档

Description

Given an integer array nums where every element appears three times except for one, which appears exactly once. Find the single element and return it.

You must implement a solution with a linear runtime complexity and use only constant extra space.

 

Example 1:

Input: nums = [2,2,3,2]
Output: 3

Example 2:

Input: nums = [0,1,0,1,0,1,99]
Output: 99

 

Constraints:

  • 1 <= nums.length <= 3 * 104
  • -231 <= nums[i] <= 231 - 1
  • Each element in nums appears exactly three times except for one element which appears once.

Solutions

Python3

class Solution:
    def singleNumber(self, nums: List[int]) -> int:
        ans = 0
        for i in range(32):
            cnt = sum(num >> i & 1 for num in nums)
            if cnt % 3:
                if i == 31:
                    ans -= 1 << i
                else:
                    ans |= 1 << i
        return ans
class Solution:
    def singleNumber(self, nums: List[int]) -> int:
        a = b = 0
        for c in nums:
            aa = (~a & b & c) | (a & ~b & ~c)
            bb = ~a & (b ^ c)
            a, b = aa, bb
        return b

Java

class Solution {
    public int singleNumber(int[] nums) {
        int ans = 0;
        for (int i = 0; i < 32; i++) {
            int cnt = 0;
            for (int num : nums) {
                cnt += num >> i & 1;
            }
            cnt %= 3;
            ans |= cnt << i;
        }
        return ans;
    }
}
class Solution {
    public int singleNumber(int[] nums) {
        int a = 0, b = 0;
        for (int c : nums) {
            int aa = (~a & b & c) | (a & ~b & ~c);
            int bb = ~a & (b ^ c);
            a = aa;
            b = bb;
        }
        return b;
    }
}

Go

func singleNumber(nums []int) int {
	ans := int32(0)
	for i := 0; i < 32; i++ {
		cnt := int32(0)
		for _, num := range nums {
			cnt += int32(num) >> i & 1
		}
		cnt %= 3
		ans |= cnt << i
	}
	return int(ans)
}
func singleNumber(nums []int) int {
	a, b := 0, 0
	for _, c := range nums {
		aa := (^a & b & c) | (a & ^b & ^c)
		bb := ^a & (b ^ c)
		a, b = aa, bb
	}
	return b
}

C++

class Solution {
public:
    int singleNumber(vector<int>& nums) {
        int ans = 0;
        for (int i = 0; i < 32; ++i) {
            int cnt = 0;
            for (int num : nums) {
                cnt += ((num >> i) & 1);
            }
            cnt %= 3;
            ans |= cnt << i;
        }
        return ans;
    }
};
class Solution {
public:
    int singleNumber(vector<int>& nums) {
        int a = 0, b = 0;
        for (int c : nums) {
            int aa = (~a & b & c) | (a & ~b & ~c);
            int bb = ~a & (b ^ c);
            a = aa;
            b = bb;
        }
        return b;
    }
};

TypeScript

function singleNumber(nums: number[]): number {
    let ans = 0;
    for (let i = 0; i < 32; i++) {
        const count = nums.reduce((r, v) => r + ((v >> i) & 1), 0);
        ans |= count % 3 << i;
    }
    return ans;
}
function singleNumber(nums: number[]): number {
    let a = 0;
    let b = 0;
    for (const c of nums) {
        const aa = (~a & b & c) | (a & ~b & ~c);
        const bb = ~a & (b ^ c);
        a = aa;
        b = bb;
    }
    return b;
}

Rust

impl Solution {
    pub fn single_number(nums: Vec<i32>) -> i32 {
        let mut ans = 0;
        for i in 0..32 {
            let count = nums.iter().map(|v| v >> i & 1).sum::<i32>();
            ans |= count % 3 << i;
        }
        ans
    }
}

C

int singleNumber(int* nums, int numsSize) {
    int ans = 0;
    for (int i = 0; i < 32; i++) {
        int count = 0;
        for (int j = 0; j < numsSize; j++) {
            if (nums[j] >> i & 1) {
                count++;
            }
        }
        ans |= (uint) (count % 3) << i;
    }
    return ans;
}

Swift

class Solution {
    func singleNumber(_ nums: [Int]) -> Int {
        var a = nums.sorted()
        var n = a.count
        for i in stride(from: 0, through: n - 2, by: 3) {
            if a[i] != a[i + 1] {
                return a[i]
            }
        }
        return a[n - 1]
    }
}

...