Given an integer array nums
where every element appears three times except for one, which appears exactly once. Find the single element and return it.
You must implement a solution with a linear runtime complexity and use only constant extra space.
Example 1:
Input: nums = [2,2,3,2] Output: 3
Example 2:
Input: nums = [0,1,0,1,0,1,99] Output: 99
Constraints:
1 <= nums.length <= 3 * 104
-231 <= nums[i] <= 231 - 1
- Each element in
nums
appears exactly three times except for one element which appears once.
class Solution:
def singleNumber(self, nums: List[int]) -> int:
ans = 0
for i in range(32):
cnt = sum(num >> i & 1 for num in nums)
if cnt % 3:
if i == 31:
ans -= 1 << i
else:
ans |= 1 << i
return ans
class Solution:
def singleNumber(self, nums: List[int]) -> int:
a = b = 0
for c in nums:
aa = (~a & b & c) | (a & ~b & ~c)
bb = ~a & (b ^ c)
a, b = aa, bb
return b
class Solution {
public int singleNumber(int[] nums) {
int ans = 0;
for (int i = 0; i < 32; i++) {
int cnt = 0;
for (int num : nums) {
cnt += num >> i & 1;
}
cnt %= 3;
ans |= cnt << i;
}
return ans;
}
}
class Solution {
public int singleNumber(int[] nums) {
int a = 0, b = 0;
for (int c : nums) {
int aa = (~a & b & c) | (a & ~b & ~c);
int bb = ~a & (b ^ c);
a = aa;
b = bb;
}
return b;
}
}
func singleNumber(nums []int) int {
ans := int32(0)
for i := 0; i < 32; i++ {
cnt := int32(0)
for _, num := range nums {
cnt += int32(num) >> i & 1
}
cnt %= 3
ans |= cnt << i
}
return int(ans)
}
func singleNumber(nums []int) int {
a, b := 0, 0
for _, c := range nums {
aa := (^a & b & c) | (a & ^b & ^c)
bb := ^a & (b ^ c)
a, b = aa, bb
}
return b
}
class Solution {
public:
int singleNumber(vector<int>& nums) {
int ans = 0;
for (int i = 0; i < 32; ++i) {
int cnt = 0;
for (int num : nums) {
cnt += ((num >> i) & 1);
}
cnt %= 3;
ans |= cnt << i;
}
return ans;
}
};
class Solution {
public:
int singleNumber(vector<int>& nums) {
int a = 0, b = 0;
for (int c : nums) {
int aa = (~a & b & c) | (a & ~b & ~c);
int bb = ~a & (b ^ c);
a = aa;
b = bb;
}
return b;
}
};
function singleNumber(nums: number[]): number {
let ans = 0;
for (let i = 0; i < 32; i++) {
const count = nums.reduce((r, v) => r + ((v >> i) & 1), 0);
ans |= count % 3 << i;
}
return ans;
}
function singleNumber(nums: number[]): number {
let a = 0;
let b = 0;
for (const c of nums) {
const aa = (~a & b & c) | (a & ~b & ~c);
const bb = ~a & (b ^ c);
a = aa;
b = bb;
}
return b;
}
impl Solution {
pub fn single_number(nums: Vec<i32>) -> i32 {
let mut ans = 0;
for i in 0..32 {
let count = nums.iter().map(|v| v >> i & 1).sum::<i32>();
ans |= count % 3 << i;
}
ans
}
}
int singleNumber(int* nums, int numsSize) {
int ans = 0;
for (int i = 0; i < 32; i++) {
int count = 0;
for (int j = 0; j < numsSize; j++) {
if (nums[j] >> i & 1) {
count++;
}
}
ans |= (uint) (count % 3) << i;
}
return ans;
}
class Solution {
func singleNumber(_ nums: [Int]) -> Int {
var a = nums.sorted()
var n = a.count
for i in stride(from: 0, through: n - 2, by: 3) {
if a[i] != a[i + 1] {
return a[i]
}
}
return a[n - 1]
}
}