comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Hard |
|
Given a string s
, partition s
such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s
.
Example 1:
Input: s = "aab" Output: 1 Explanation: The palindrome partitioning ["aa","b"] could be produced using 1 cut.
Example 2:
Input: s = "a" Output: 0
Example 3:
Input: s = "ab" Output: 1
Constraints:
1 <= s.length <= 2000
s
consists of lowercase English letters only.
First, we preprocess the string
Next, we define
Next, we consider how to transition the state for
The answer is
The time complexity is
class Solution:
def minCut(self, s: str) -> int:
n = len(s)
g = [[True] * n for _ in range(n)]
for i in range(n - 1, -1, -1):
for j in range(i + 1, n):
g[i][j] = s[i] == s[j] and g[i + 1][j - 1]
f = list(range(n))
for i in range(1, n):
for j in range(i + 1):
if g[j][i]:
f[i] = min(f[i], 1 + f[j - 1] if j else 0)
return f[-1]
class Solution {
public int minCut(String s) {
int n = s.length();
boolean[][] g = new boolean[n][n];
for (var row : g) {
Arrays.fill(row, true);
}
for (int i = n - 1; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
g[i][j] = s.charAt(i) == s.charAt(j) && g[i + 1][j - 1];
}
}
int[] f = new int[n];
for (int i = 0; i < n; ++i) {
f[i] = i;
}
for (int i = 1; i < n; ++i) {
for (int j = 0; j <= i; ++j) {
if (g[j][i]) {
f[i] = Math.min(f[i], j > 0 ? 1 + f[j - 1] : 0);
}
}
}
return f[n - 1];
}
}
class Solution {
public:
int minCut(string s) {
int n = s.size();
bool g[n][n];
memset(g, true, sizeof(g));
for (int i = n - 1; ~i; --i) {
for (int j = i + 1; j < n; ++j) {
g[i][j] = s[i] == s[j] && g[i + 1][j - 1];
}
}
int f[n];
iota(f, f + n, 0);
for (int i = 1; i < n; ++i) {
for (int j = 0; j <= i; ++j) {
if (g[j][i]) {
f[i] = min(f[i], j ? 1 + f[j - 1] : 0);
}
}
}
return f[n - 1];
}
};
func minCut(s string) int {
n := len(s)
g := make([][]bool, n)
f := make([]int, n)
for i := range g {
g[i] = make([]bool, n)
f[i] = i
for j := range g[i] {
g[i][j] = true
}
}
for i := n - 1; i >= 0; i-- {
for j := i + 1; j < n; j++ {
g[i][j] = s[i] == s[j] && g[i+1][j-1]
}
}
for i := 1; i < n; i++ {
for j := 0; j <= i; j++ {
if g[j][i] {
if j == 0 {
f[i] = 0
} else {
f[i] = min(f[i], f[j-1]+1)
}
}
}
}
return f[n-1]
}
function minCut(s: string): number {
const n = s.length;
const g: boolean[][] = Array.from({ length: n }, () => Array(n).fill(true));
for (let i = n - 1; ~i; --i) {
for (let j = i + 1; j < n; ++j) {
g[i][j] = s[i] === s[j] && g[i + 1][j - 1];
}
}
const f: number[] = Array.from({ length: n }, (_, i) => i);
for (let i = 1; i < n; ++i) {
for (let j = 0; j <= i; ++j) {
if (g[j][i]) {
f[i] = Math.min(f[i], j ? 1 + f[j - 1] : 0);
}
}
}
return f[n - 1];
}
public class Solution {
public int MinCut(string s) {
int n = s.Length;
bool[,] g = new bool[n,n];
int[] f = new int[n];
for (int i = 0; i < n; ++i) {
f[i] = i;
for (int j = 0; j < n; ++j) {
g[i,j] = true;
}
}
for (int i = n - 1; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
g[i,j] = s[i] == s[j] && g[i + 1,j - 1];
}
}
for (int i = 1; i < n; ++i) {
for (int j = 0; j <= i; ++j) {
if (g[j,i]) {
f[i] = Math.Min(f[i], j > 0 ? 1 + f[j - 1] : 0);
}
}
}
return f[n - 1];
}
}