You are given a 0-indexed integer array nums
. In one operation, you can:
- Choose two different indices
i
andj
such that0 <= i, j < nums.length
. - Choose a non-negative integer
k
such that thekth
bit (0-indexed) in the binary representation ofnums[i]
andnums[j]
is1
. - Subtract
2k
fromnums[i]
andnums[j]
.
A subarray is beautiful if it is possible to make all of its elements equal to 0
after applying the above operation any number of times.
Return the number of beautiful subarrays in the array nums
.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [4,3,1,2,4] Output: 2 Explanation: There are 2 beautiful subarrays in nums: [4,3,1,2,4] and [4,3,1,2,4]. - We can make all elements in the subarray [3,1,2] equal to 0 in the following way: - Choose [3, 1, 2] and k = 1. Subtract 21 from both numbers. The subarray becomes [1, 1, 0]. - Choose [1, 1, 0] and k = 0. Subtract 20 from both numbers. The subarray becomes [0, 0, 0]. - We can make all elements in the subarray [4,3,1,2,4] equal to 0 in the following way: - Choose [4, 3, 1, 2, 4] and k = 2. Subtract 22 from both numbers. The subarray becomes [0, 3, 1, 2, 0]. - Choose [0, 3, 1, 2, 0] and k = 0. Subtract 20 from both numbers. The subarray becomes [0, 2, 0, 2, 0]. - Choose [0, 2, 0, 2, 0] and k = 1. Subtract 21 from both numbers. The subarray becomes [0, 0, 0, 0, 0].
Example 2:
Input: nums = [1,10,4] Output: 0 Explanation: There are no beautiful subarrays in nums.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 106
Approach 1: Prefix XOR + Hash Table
We observe that a subarray can become an array of all
If there are indices
Therefore, we can use the prefix XOR method and use the hash table
Finally, return the answer.
Time complexity
class Solution:
def beautifulSubarrays(self, nums: List[int]) -> int:
cnt = Counter({0: 1})
ans = mask = 0
for x in nums:
mask ^= x
ans += cnt[mask]
cnt[mask] += 1
return ans
class Solution {
public long beautifulSubarrays(int[] nums) {
Map<Integer, Integer> cnt = new HashMap<>();
cnt.put(0, 1);
long ans = 0;
int mask = 0;
for (int x : nums) {
mask ^= x;
ans += cnt.getOrDefault(mask, 0);
cnt.merge(mask, 1, Integer::sum);
}
return ans;
}
}
class Solution {
public:
long long beautifulSubarrays(vector<int>& nums) {
unordered_map<int, int> cnt{{0, 1}};
long long ans = 0;
int mask = 0;
for (int x : nums) {
mask ^= x;
ans += cnt[mask];
++cnt[mask];
}
return ans;
}
};
func beautifulSubarrays(nums []int) (ans int64) {
cnt := map[int]int{0: 1}
mask := 0
for _, x := range nums {
mask ^= x
ans += int64(cnt[mask])
cnt[mask]++
}
return
}
function beautifulSubarrays(nums: number[]): number {
const cnt = new Map();
cnt.set(0, 1);
let ans = 0;
let mask = 0;
for (const x of nums) {
mask ^= x;
ans += cnt.get(mask) || 0;
cnt.set(mask, (cnt.get(mask) || 0) + 1);
}
return ans;
}