comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
Medium |
1704 |
Weekly Contest 251 Q3 |
|
There is a survey that consists of n
questions where each question's answer is either 0
(no) or 1
(yes).
The survey was given to m
students numbered from 0
to m - 1
and m
mentors numbered from 0
to m - 1
. The answers of the students are represented by a 2D integer array students
where students[i]
is an integer array that contains the answers of the ith
student (0-indexed). The answers of the mentors are represented by a 2D integer array mentors
where mentors[j]
is an integer array that contains the answers of the jth
mentor (0-indexed).
Each student will be assigned to one mentor, and each mentor will have one student assigned to them. The compatibility score of a student-mentor pair is the number of answers that are the same for both the student and the mentor.
- For example, if the student's answers were
[1, 0, 1]
and the mentor's answers were[0, 0, 1]
, then their compatibility score is 2 because only the second and the third answers are the same.
You are tasked with finding the optimal student-mentor pairings to maximize the sum of the compatibility scores.
Given students
and mentors
, return the maximum compatibility score sum that can be achieved.
Example 1:
Input: students = [[1,1,0],[1,0,1],[0,0,1]], mentors = [[1,0,0],[0,0,1],[1,1,0]] Output: 8 Explanation: We assign students to mentors in the following way: - student 0 to mentor 2 with a compatibility score of 3. - student 1 to mentor 0 with a compatibility score of 2. - student 2 to mentor 1 with a compatibility score of 3. The compatibility score sum is 3 + 2 + 3 = 8.
Example 2:
Input: students = [[0,0],[0,0],[0,0]], mentors = [[1,1],[1,1],[1,1]] Output: 0 Explanation: The compatibility score of any student-mentor pair is 0.
Constraints:
m == students.length == mentors.length
n == students[i].length == mentors[j].length
1 <= m, n <= 8
students[i][k]
is either0
or1
.mentors[j][k]
is either0
or1
.
We can first preprocess the compatibility score
Define a function
In
We call
The time complexity is
class Solution:
def maxCompatibilitySum(
self, students: List[List[int]], mentors: List[List[int]]
) -> int:
def dfs(i: int, s: int):
if i >= m:
nonlocal ans
ans = max(ans, s)
return
for j in range(m):
if not vis[j]:
vis[j] = True
dfs(i + 1, s + g[i][j])
vis[j] = False
ans = 0
m = len(students)
vis = [False] * m
g = [[0] * m for _ in range(m)]
for i, x in enumerate(students):
for j, y in enumerate(mentors):
g[i][j] = sum(a == b for a, b in zip(x, y))
dfs(0, 0)
return ans
class Solution {
private int m;
private int ans;
private int[][] g;
private boolean[] vis;
public int maxCompatibilitySum(int[][] students, int[][] mentors) {
m = students.length;
g = new int[m][m];
vis = new boolean[m];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < m; ++j) {
for (int k = 0; k < students[i].length; ++k) {
if (students[i][k] == mentors[j][k]) {
++g[i][j];
}
}
}
}
dfs(0, 0);
return ans;
}
private void dfs(int i, int s) {
if (i >= m) {
ans = Math.max(ans, s);
return;
}
for (int j = 0; j < m; ++j) {
if (!vis[j]) {
vis[j] = true;
dfs(i + 1, s + g[i][j]);
vis[j] = false;
}
}
}
}
class Solution {
public:
int maxCompatibilitySum(vector<vector<int>>& students, vector<vector<int>>& mentors) {
int m = students.size();
int n = students[0].size();
vector<vector<int>> g(m, vector<int>(m));
vector<bool> vis(m);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < m; ++j) {
for (int k = 0; k < n; ++k) {
g[i][j] += students[i][k] == mentors[j][k];
}
}
}
int ans = 0;
auto dfs = [&](this auto&& dfs, int i, int s) {
if (i >= m) {
ans = max(ans, s);
return;
}
for (int j = 0; j < m; ++j) {
if (!vis[j]) {
vis[j] = true;
dfs(i + 1, s + g[i][j]);
vis[j] = false;
}
}
};
dfs(0, 0);
return ans;
}
};
func maxCompatibilitySum(students [][]int, mentors [][]int) (ans int) {
m, n := len(students), len(students[0])
g := make([][]int, m)
vis := make([]bool, m)
for i, x := range students {
g[i] = make([]int, m)
for j, y := range mentors {
for k := 0; k < n; k++ {
if x[k] == y[k] {
g[i][j]++
}
}
}
}
var dfs func(int, int)
dfs = func(i, s int) {
if i == m {
ans = max(ans, s)
return
}
for j := 0; j < m; j++ {
if !vis[j] {
vis[j] = true
dfs(i+1, s+g[i][j])
vis[j] = false
}
}
}
dfs(0, 0)
return
}
function maxCompatibilitySum(students: number[][], mentors: number[][]): number {
let ans = 0;
const m = students.length;
const vis: boolean[] = Array(m).fill(false);
const g: number[][] = Array.from({ length: m }, () => Array(m).fill(0));
for (let i = 0; i < m; ++i) {
for (let j = 0; j < m; ++j) {
for (let k = 0; k < students[i].length; ++k) {
if (students[i][k] === mentors[j][k]) {
g[i][j]++;
}
}
}
}
const dfs = (i: number, s: number): void => {
if (i >= m) {
ans = Math.max(ans, s);
return;
}
for (let j = 0; j < m; ++j) {
if (!vis[j]) {
vis[j] = true;
dfs(i + 1, s + g[i][j]);
vis[j] = false;
}
}
};
dfs(0, 0);
return ans;
}
impl Solution {
pub fn max_compatibility_sum(students: Vec<Vec<i32>>, mentors: Vec<Vec<i32>>) -> i32 {
let mut ans = 0;
let m = students.len();
let mut vis = vec![false; m];
let mut g = vec![vec![0; m]; m];
for i in 0..m {
for j in 0..m {
for k in 0..students[i].len() {
if students[i][k] == mentors[j][k] {
g[i][j] += 1;
}
}
}
}
fn dfs(i: usize, s: i32, m: usize, g: &Vec<Vec<i32>>, vis: &mut Vec<bool>, ans: &mut i32) {
if i >= m {
*ans = (*ans).max(s);
return;
}
for j in 0..m {
if !vis[j] {
vis[j] = true;
dfs(i + 1, s + g[i][j], m, g, vis, ans);
vis[j] = false;
}
}
}
dfs(0, 0, m, &g, &mut vis, &mut ans);
ans
}
}
/**
* @param {number[][]} students
* @param {number[][]} mentors
* @return {number}
*/
var maxCompatibilitySum = function (students, mentors) {
let ans = 0;
const m = students.length;
const vis = Array(m).fill(false);
const g = Array.from({ length: m }, () => Array(m).fill(0));
for (let i = 0; i < m; ++i) {
for (let j = 0; j < m; ++j) {
for (let k = 0; k < students[i].length; ++k) {
if (students[i][k] === mentors[j][k]) {
g[i][j]++;
}
}
}
}
const dfs = function (i, s) {
if (i >= m) {
ans = Math.max(ans, s);
return;
}
for (let j = 0; j < m; ++j) {
if (!vis[j]) {
vis[j] = true;
dfs(i + 1, s + g[i][j]);
vis[j] = false;
}
}
};
dfs(0, 0);
return ans;
};