Skip to content

Latest commit

 

History

History
103 lines (71 loc) · 3.12 KB

File metadata and controls

103 lines (71 loc) · 3.12 KB

English Version

题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

 

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace",它的长度为 3。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc",它的长度为 3。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0。

 

提示:

  • 1 <= text1.length <= 1000
  • 1 <= text2.length <= 1000
  • 输入的字符串只含有小写英文字符。

解法

动态规划法。

定义 dp[i][j] 表示 text1[0:i-1]text2[0:j-1] 的最长公共子序列(闭区间)。

递推公式如下:

Python3

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m, n = len(text1), len(text2)
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                dp[i][j] = dp[i - 1][j - 1] + 1 if text1[i - 1] == text2[j - 1] else max(dp[i - 1][j], dp[i][j - 1])
        return dp[m][n]

Java

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length(), n = text2.length();
        int[][] dp = new int[m + 1][n + 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                char c1 = text1.charAt(i - 1), c2 = text2.charAt(j - 1);
                dp[i][j] = c1 == c2 ? dp[i - 1][j - 1] + 1 : Math.max(dp[i - 1][j], dp[i][j - 1]);
            }
        }
        return dp[m][n];
    }
}

...