Skip to content

Latest commit

 

History

History
185 lines (143 loc) · 5.63 KB

File metadata and controls

185 lines (143 loc) · 5.63 KB

English Version

题目描述

给出非负整数数组 A ,返回两个非重叠(连续)子数组中元素的最大和,子数组的长度分别为 LM。(这里需要澄清的是,长为 L 的子数组可以出现在长为 M 的子数组之前或之后。)

从形式上看,返回最大的 V,而 V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) 并满足下列条件之一:

 

  • 0 <= i < i + L - 1 < j < j + M - 1 < A.length,
  • 0 <= j < j + M - 1 < i < i + L - 1 < A.length.

 

示例 1:

输入:A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
输出:20
解释:子数组的一种选择中,[9] 长度为 1,[6,5] 长度为 2。

示例 2:

输入:A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
输出:29
解释:子数组的一种选择中,[3,8,1] 长度为 3,[8,9] 长度为 2。

示例 3:

输入:A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
输出:31
解释:子数组的一种选择中,[5,6,0,9] 长度为 4,[0,3,8] 长度为 3。

 

提示:

  • L >= 1
  • M >= 1
  • L + M <= A.length <= 1000
  • 0 <= A[i] <= 1000

解法

方法一:前缀和 + 枚举

我们先预处理得到数组 nums 的前缀和数组 $s$,其中 $s[i]$ 表示 $nums$ 中前 $i$ 个元素的和。

接下来,我们分两种情况枚举:

假设 $firstLen$ 个元素的子数组在 $secondLen$ 个元素的子数组的左边,那么我们可以枚举 $secondLen$ 个元素的子数组的左端点 $i$,用变量 $t$ 维护左边 $firstLen$ 个元素的子数组的最大和,那么答案就是 $t + s[i + secondLen] - s[i]$。枚举完所有的 $i$,就可以得到候选答案。

假设 $secondLen$ 个元素的子数组在 $firstLen$ 个元素的子数组的左边,那么我们可以枚举 $firstLen$ 个元素的子数组的左端点 $i$,用变量 $t$ 维护左边 $secondLen$ 个元素的子数组的最大和,那么答案就是 $t + s[i + firstLen] - s[i]$。枚举完所有的 $i$,就可以得到候选答案。

最后,我们取两种情况下的候选答案的最大值即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 nums 的长度。

Python3

class Solution:
    def maxSumTwoNoOverlap(self, nums: List[int], firstLen: int, secondLen: int) -> int:
        n = len(nums)
        s = list(accumulate(nums, initial=0))
        ans = t = 0
        i = firstLen
        while i + secondLen - 1 < n:
            t = max(t, s[i] - s[i - firstLen])
            ans = max(ans, t + s[i + secondLen] - s[i])
            i += 1
        t = 0
        i = secondLen
        while i + firstLen - 1 < n:
            t = max(t, s[i] - s[i - secondLen])
            ans = max(ans, t + s[i + firstLen] - s[i])
            i += 1
        return ans

Java

class Solution {
    public int maxSumTwoNoOverlap(int[] nums, int firstLen, int secondLen) {
        int n = nums.length;
        int[] s = new int[n + 1];
        for (int i = 0; i < n; ++i) {
            s[i + 1] = s[i] + nums[i];
        }
        int ans = 0;
        for (int i = firstLen, t = 0; i + secondLen - 1 < n; ++i) {
            t = Math.max(t, s[i] - s[i - firstLen]);
            ans = Math.max(ans, t + s[i + secondLen] - s[i]);
        }
        for (int i = secondLen, t = 0; i + firstLen - 1 < n; ++i) {
            t = Math.max(t, s[i] - s[i - secondLen]);
            ans = Math.max(ans, t + s[i + firstLen] - s[i]);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maxSumTwoNoOverlap(vector<int>& nums, int firstLen, int secondLen) {
        int n = nums.size();
        vector<int> s(n + 1);
        for (int i = 0; i < n; ++i) {
            s[i + 1] = s[i] + nums[i];
        }
        int ans = 0;
        for (int i = firstLen, t = 0; i + secondLen - 1 < n; ++i) {
            t = max(t, s[i] - s[i - firstLen]);
            ans = max(ans, t + s[i + secondLen] - s[i]);
        }
        for (int i = secondLen, t = 0; i + firstLen - 1 < n; ++i) {
            t = max(t, s[i] - s[i - secondLen]);
            ans = max(ans, t + s[i + firstLen] - s[i]);
        }
        return ans;
    }
};

Go

func maxSumTwoNoOverlap(nums []int, firstLen int, secondLen int) (ans int) {
	n := len(nums)
	s := make([]int, n+1)
	for i, x := range nums {
		s[i+1] = s[i] + x
	}
	for i, t := firstLen, 0; i+secondLen-1 < n; i++ {
		t = max(t, s[i]-s[i-firstLen])
		ans = max(ans, t+s[i+secondLen]-s[i])
	}
	for i, t := secondLen, 0; i+firstLen-1 < n; i++ {
		t = max(t, s[i]-s[i-secondLen])
		ans = max(ans, t+s[i+firstLen]-s[i])
	}
	return
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

...