给出非负整数数组 A
,返回两个非重叠(连续)子数组中元素的最大和,子数组的长度分别为 L
和 M
。(这里需要澄清的是,长为 L 的子数组可以出现在长为 M 的子数组之前或之后。)
从形式上看,返回最大的 V
,而 V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1])
并满足下列条件之一:
0 <= i < i + L - 1 < j < j + M - 1 < A.length
, 或0 <= j < j + M - 1 < i < i + L - 1 < A.length
.
示例 1:
输入:A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 输出:20 解释:子数组的一种选择中,[9] 长度为 1,[6,5] 长度为 2。
示例 2:
输入:A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 输出:29 解释:子数组的一种选择中,[3,8,1] 长度为 3,[8,9] 长度为 2。
示例 3:
输入:A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 输出:31 解释:子数组的一种选择中,[5,6,0,9] 长度为 4,[0,3,8] 长度为 3。
提示:
L >= 1
M >= 1
L + M <= A.length <= 1000
0 <= A[i] <= 1000
方法一:前缀和 + 枚举
我们先预处理得到数组 nums
的前缀和数组
接下来,我们分两种情况枚举:
假设
假设
最后,我们取两种情况下的候选答案的最大值即可。
时间复杂度 nums
的长度。
class Solution:
def maxSumTwoNoOverlap(self, nums: List[int], firstLen: int, secondLen: int) -> int:
n = len(nums)
s = list(accumulate(nums, initial=0))
ans = t = 0
i = firstLen
while i + secondLen - 1 < n:
t = max(t, s[i] - s[i - firstLen])
ans = max(ans, t + s[i + secondLen] - s[i])
i += 1
t = 0
i = secondLen
while i + firstLen - 1 < n:
t = max(t, s[i] - s[i - secondLen])
ans = max(ans, t + s[i + firstLen] - s[i])
i += 1
return ans
class Solution {
public int maxSumTwoNoOverlap(int[] nums, int firstLen, int secondLen) {
int n = nums.length;
int[] s = new int[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
int ans = 0;
for (int i = firstLen, t = 0; i + secondLen - 1 < n; ++i) {
t = Math.max(t, s[i] - s[i - firstLen]);
ans = Math.max(ans, t + s[i + secondLen] - s[i]);
}
for (int i = secondLen, t = 0; i + firstLen - 1 < n; ++i) {
t = Math.max(t, s[i] - s[i - secondLen]);
ans = Math.max(ans, t + s[i + firstLen] - s[i]);
}
return ans;
}
}
class Solution {
public:
int maxSumTwoNoOverlap(vector<int>& nums, int firstLen, int secondLen) {
int n = nums.size();
vector<int> s(n + 1);
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
int ans = 0;
for (int i = firstLen, t = 0; i + secondLen - 1 < n; ++i) {
t = max(t, s[i] - s[i - firstLen]);
ans = max(ans, t + s[i + secondLen] - s[i]);
}
for (int i = secondLen, t = 0; i + firstLen - 1 < n; ++i) {
t = max(t, s[i] - s[i - secondLen]);
ans = max(ans, t + s[i + firstLen] - s[i]);
}
return ans;
}
};
func maxSumTwoNoOverlap(nums []int, firstLen int, secondLen int) (ans int) {
n := len(nums)
s := make([]int, n+1)
for i, x := range nums {
s[i+1] = s[i] + x
}
for i, t := firstLen, 0; i+secondLen-1 < n; i++ {
t = max(t, s[i]-s[i-firstLen])
ans = max(ans, t+s[i+secondLen]-s[i])
}
for i, t := secondLen, 0; i+firstLen-1 < n; i++ {
t = max(t, s[i]-s[i-secondLen])
ans = max(ans, t+s[i+firstLen]-s[i])
}
return
}
func max(a, b int) int {
if a > b {
return a
}
return b
}