给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向前跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
示例 1:
输入: nums = [2,3,1,1,4] 输出: 2 解释: 跳到最后一个位置的最小跳跃数是2
。 从下标为 0 跳到下标为 1 的位置,跳1
步,然后跳3
步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4] 输出: 2
提示:
1 <= nums.length <= 104
0 <= nums[i] <= 1000
- 题目保证可以到达
nums[n-1]
方法一:动态规划
方法二:贪心
我们可以用变量 mx
记录当前位置能够到达的最远位置,用变量 end
记录上一次跳跃的位置,用变量 steps
记录跳跃的次数。
接下来,我们从 mx
,当 end
更新为 mx
,并将 steps
加
遍历结束,返回 steps
即可。
时间复杂度
相似题目:
class Solution:
def jump(self, nums: List[int]) -> int:
end = mx = steps = 0
for i, num in enumerate(nums[:-1]):
mx = max(mx, i + num)
if i == end:
end = mx
steps += 1
return steps
class Solution {
public int jump(int[] nums) {
int end = 0;
int mx = 0;
int steps = 0;
for (int i = 0; i < nums.length - 1; ++i) {
mx = Math.max(mx, i + nums[i]);
if (i == end) {
end = mx;
++steps;
}
}
return steps;
}
}
class Solution {
public:
int jump(vector<int>& nums) {
int mx = 0, steps = 0, end = 0;
for (int i = 0; i < nums.size() - 1; ++i) {
mx = max(mx, i + nums[i]);
if (i == end) {
end = mx;
++steps;
}
}
return steps;
}
};
func jump(nums []int) int {
mx, steps, end := 0, 0, 0
for i := 0; i < len(nums)-1; i++ {
mx = max(mx, i+nums[i])
if i == end {
end = mx
steps++
}
}
return steps
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
public class Solution {
public int Jump(int[] nums) {
int end = 0;
int mx = 0;
int steps = 0;
for (int i = 0; i < nums.Length - 1; ++i)
{
mx = Math.Max(mx, i + nums[i]);
if (i == end)
{
end = mx;
++steps;
}
}
return steps;
}
}
#define min(a, b) a < b ? a : b
int jump(int* nums, int numsSize) {
int dp[numsSize];
for (int i = 0; i < numsSize; i++) {
dp[i] = numsSize;
}
dp[0] = 0;
for (int i = 0; i < numsSize - 1; i++) {
for (int j = i + 1; j < (min(i + nums[i] + 1, numsSize)); j++) {
dp[j] = min(dp[j], dp[i] + 1);
}
}
return dp[numsSize - 1];
}
impl Solution {
pub fn jump(nums: Vec<i32>) -> i32 {
let n = nums.len();
let mut dp = vec![i32::MAX; n];
dp[0] = 0;
for i in 0..n - 1 {
for j in 1..=nums[i] as usize {
if i + j >= n {
break;
}
dp[i + j] = dp[i + j].min(dp[i] + 1);
}
}
dp[n - 1]
}
}