-
-
Notifications
You must be signed in to change notification settings - Fork 8.9k
/
Copy pathSolution2.py
59 lines (51 loc) · 1.61 KB
/
Solution2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
def dfs(l, r):
if l > r:
return None
val = tree.query(1, l, r)
root = TreeNode(val)
root.left = dfs(l, d[val] - 1)
root.right = dfs(d[val] + 1, r)
return root
d = {v: i for i, v in enumerate(nums, 1)}
tree = SegmentTree(nums)
return dfs(1, len(nums))
class Node:
def __init__(self):
self.l = 0
self.r = 0
self.v = 0
class SegmentTree:
def __init__(self, nums):
self.nums = nums
n = len(nums)
self.tr = [Node() for _ in range(n << 2)]
self.build(1, 1, n)
def build(self, u, l, r):
self.tr[u].l, self.tr[u].r = l, r
if l == r:
self.tr[u].v = self.nums[l - 1]
return
mid = (l + r) >> 1
self.build(u << 1, l, mid)
self.build(u << 1 | 1, mid + 1, r)
self.pushup(u)
def query(self, u, l, r):
if self.tr[u].l >= l and self.tr[u].r <= r:
return self.tr[u].v
mid = (self.tr[u].l + self.tr[u].r) >> 1
v = 0
if l <= mid:
v = max(v, self.query(u << 1, l, r))
if r > mid:
v = max(v, self.query(u << 1 | 1, l, r))
return v
def pushup(self, u):
self.tr[u].v = max(self.tr[u << 1].v, self.tr[u << 1 | 1].v)