Skip to content

Latest commit

 

History

History
182 lines (151 loc) · 5.58 KB

File metadata and controls

182 lines (151 loc) · 5.58 KB

中文文档

Description

There are some prizes on the X-axis. You are given an integer array prizePositions that is sorted in non-decreasing order, where prizePositions[i] is the position of the ith prize. There could be different prizes at the same position on the line. You are also given an integer k.

You are allowed to select two segments with integer endpoints. The length of each segment must be k. You will collect all prizes whose position falls within at least one of the two selected segments (including the endpoints of the segments). The two selected segments may intersect.

  • For example if k = 2, you can choose segments [1, 3] and [2, 4], and you will win any prize i that satisfies 1 <= prizePositions[i] <= 3 or 2 <= prizePositions[i] <= 4.

Return the maximum number of prizes you can win if you choose the two segments optimally.

 

Example 1:

Input: prizePositions = [1,1,2,2,3,3,5], k = 2
Output: 7
Explanation: In this example, you can win all 7 prizes by selecting two segments [1, 3] and [3, 5].

Example 2:

Input: prizePositions = [1,2,3,4], k = 0
Output: 2
Explanation: For this example, one choice for the segments is [3, 3] and [4, 4], and you will be able to get 2 prizes. 

 

Constraints:

  • 1 <= prizePositions.length <= 105
  • 1 <= prizePositions[i] <= 109
  • 0 <= k <= 109
  • prizePositions is sorted in non-decreasing order.

 

<style type="text/css">.spoilerbutton {display:block; border:dashed; padding: 0px 0px; margin:10px 0px; font-size:150%; font-weight: bold; color:#000000; background-color:cyan; outline:0; } .spoiler {overflow:hidden;} .spoiler > div {-webkit-transition: all 0s ease;-moz-transition: margin 0s ease;-o-transition: all 0s ease;transition: margin 0s ease;} .spoilerbutton[value="Show Message"] + .spoiler > div {margin-top:-500%;} .spoilerbutton[value="Hide Message"] + .spoiler {padding:5px;} </style>

Solutions

Python3

class Solution:
    def maximizeWin(self, prizePositions: List[int], k: int) -> int:
        n = len(prizePositions)
        f = [0] * (n + 1)
        ans = 0
        for i, x in enumerate(prizePositions, 1):
            j = bisect_left(prizePositions, x - k)
            ans = max(ans, f[j] + i - j)
            f[i] = max(f[i - 1], i - j)
        return ans

Java

class Solution {
    public int maximizeWin(int[] prizePositions, int k) {
        int n = prizePositions.length;
        int[] f = new int[n + 1];
        int ans = 0;
        for (int i = 1; i <= n; ++i) {
            int x = prizePositions[i - 1];
            int j = search(prizePositions, x - k);
            ans = Math.max(ans, f[j] + i - j);
            f[i] = Math.max(f[i - 1], i - j);
        }
        return ans;
    }

    private int search(int[] nums, int x) {
        int left = 0, right = nums.length;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (nums[mid] >= x) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
}

C++

class Solution {
public:
    int maximizeWin(vector<int>& prizePositions, int k) {
        int n = prizePositions.size();
        vector<int> f(n + 1);
        int ans = 0;
        for (int i = 1; i <= n; ++i) {
            int x = prizePositions[i - 1];
            int j = lower_bound(prizePositions.begin(), prizePositions.end(), x - k) - prizePositions.begin();
            ans = max(ans, f[j] + i - j);
            f[i] = max(f[i - 1], i - j);
        }
        return ans;
    }
};

Go

func maximizeWin(prizePositions []int, k int) (ans int) {
	n := len(prizePositions)
	f := make([]int, n+1)
	for i, x := range prizePositions {
		j := sort.Search(n, func(h int) bool { return prizePositions[h] >= x-k })
		ans = max(ans, f[j]+i-j+1)
		f[i+1] = max(f[i], i-j+1)
	}
	return
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

TypeScript

function maximizeWin(prizePositions: number[], k: number): number {
    const n = prizePositions.length;
    const f: number[] = Array(n + 1).fill(0);
    let ans = 0;
    const search = (x: number): number => {
        let left = 0;
        let right = n;
        while (left < right) {
            const mid = (left + right) >> 1;
            if (prizePositions[mid] >= x) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    };
    for (let i = 1; i <= n; ++i) {
        const x = prizePositions[i - 1];
        const j = search(x - k);
        ans = Math.max(ans, f[j] + i - j);
        f[i] = Math.max(f[i - 1], i - j);
    }
    return ans;
}

...