Skip to content

Files

Latest commit

c29b144 · May 17, 2024

History

History
109 lines (77 loc) · 2.02 KB

README_EN.md

File metadata and controls

109 lines (77 loc) · 2.02 KB
comments difficulty edit_url
true
Easy

中文文档

Description

Write a method that finds the maximum of two numbers. You should not use if-else or any other comparison operator.

Example:

Input: a = 1, b = 2

Output: 2

Solutions

Solution 1: Bitwise Operation

We can extract the sign bit k of a b . If the sign bit is 1 , it means a < b ; if the sign bit is 0 , it means a b .

Then the final result is a × ( k 1 ) + b × k .

The time complexity is O ( 1 ) , and the space complexity is O ( 1 ) .

Python3

class Solution:
    def maximum(self, a: int, b: int) -> int:
        k = (int(((a - b) & 0xFFFFFFFFFFFFFFFF) >> 63)) & 1
        return a * (k ^ 1) + b * k

Java

class Solution {
    public int maximum(int a, int b) {
        int k = (int) (((long) a - (long) b) >> 63) & 1;
        return a * (k ^ 1) + b * k;
    }
}

C++

class Solution {
public:
    int maximum(int a, int b) {
        int k = ((static_cast<long long>(a) - static_cast<long long>(b)) >> 63) & 1;
        return a * (k ^ 1) + b * k;
    }
};

Go

func maximum(a int, b int) int {
	k := (a - b) >> 63 & 1
	return a*(k^1) + b*k
}

TypeScript

function maximum(a: number, b: number): number {
    const k: number = Number(((BigInt(a) - BigInt(b)) >> BigInt(63)) & BigInt(1));
    return a * (k ^ 1) + b * k;
}

Swift

class Solution {
    func maximum(_ a: Int, _ b: Int) -> Int {
        let diff = Int64(a) - Int64(b)
        let k = Int((diff >> 63) & 1)
        return a * (k ^ 1) + b * k
    }
}