Skip to content

Latest commit

 

History

History
117 lines (91 loc) · 3.09 KB

File metadata and controls

117 lines (91 loc) · 3.09 KB

中文文档

Description

Given an array of integers numbers that is already sorted in ascending order, find two numbers such that they add up to a specific target number.

Return the indices of the two numbers (1-indexed) as an integer array answer of size 2, where 1 <= answer[0] < answer[1] <= numbers.length.

You may assume that each input would have exactly one solution and you may not use the same element twice.

 

Example 1:

Input: numbers = [2,7,11,15], target = 9
Output: [1,2]
Explanation: The sum of 2 and 7 is 9. Therefore index1 = 1, index2 = 2.

Example 2:

Input: numbers = [2,3,4], target = 6
Output: [1,3]

Example 3:

Input: numbers = [-1,0], target = -1
Output: [1,2]

 

Constraints:

  • 2 <= numbers.length <= 3 * 104
  • -1000 <= numbers[i] <= 1000
  • numbers is sorted in increasing order.
  • -1000 <= target <= 1000
  • Only one valid answer exists.

Solutions

Python3

class Solution:
    def twoSum(self, numbers: List[int], target: int) -> List[int]:
        low, high = 0, len(numbers) - 1
        while low <= high:
            if numbers[low] + numbers[high] == target:
                return [low + 1, high + 1]
            if numbers[low] + numbers[high] < target:
                low += 1
            else:
                high -= 1
        return [-1, -1]

Java

class Solution {
    public int[] twoSum(int[] numbers, int target) {
        int low = 0, high = numbers.length - 1;
        while (low <= high) {
            if (numbers[low] + numbers[high] == target) {
                return new int[]{low + 1, high + 1};
            }
            if (numbers[low] + numbers[high] < target) {
                ++low;
            } else {
                --high;
            }
        }
        return new int[]{-1, -1};
    }
}

C++

class Solution {
public:
    vector<int> twoSum(vector<int>& numbers, int target) {
        int low = 0, high = numbers.size() - 1;
        while (low <= high) {
            if (numbers[low] + numbers[high] == target) {
                return {low + 1, high + 1};
            }
            if (numbers[low] + numbers[high] < target) {
                ++low;
            } else {
                --high;
            }
        }
        return {-1, -1};
    }
};

...