表: Weather
+---------------+---------+ | Column Name | Type | +---------------+---------+ | id | int | | recordDate | date | | temperature | int | +---------------+---------+ id 是该表具有唯一值的列。 该表包含特定日期的温度信息
编写解决方案,找出与之前(昨天的)日期相比温度更高的所有日期的 id
。
返回结果 无顺序要求 。
结果格式如下例子所示。
示例 1:
输入:
Weather 表:
+----+------------+-------------+
| id | recordDate | Temperature |
+----+------------+-------------+
| 1 | 2015-01-01 | 10 |
| 2 | 2015-01-02 | 25 |
| 3 | 2015-01-03 | 20 |
| 4 | 2015-01-04 | 30 |
+----+------------+-------------+
输出:
+----+
| id |
+----+
| 2 |
| 4 |
+----+
解释:
2015-01-02 的温度比前一天高(10 -> 25)
2015-01-04 的温度比前一天高(20 -> 30)
方法一:自连接 + DATEDIFF/SUBDATE 函数
我们可以通过自连接的方式,将 Weather
表中的每一行与它的前一行进行比较,如果温度更高,并且日期相差一天,那么就是我们要找的结果。
# Write your MySQL query statement below
SELECT w1.id
FROM
Weather AS w1
JOIN Weather AS w2
ON DATEDIFF(w1.recordDate, w2.recordDate) = 1 AND w1.temperature > w2.temperature;
# Write your MySQL query statement below
SELECT w1.id
FROM
Weather AS w1
JOIN Weather AS w2
ON SUBDATE(w1.recordDate, 1) = w2.recordDate AND w1.temperature > w2.temperature;
import pandas as pd
def rising_temperature(weather: pd.DataFrame) -> pd.DataFrame:
weather.sort_values(by="recordDate", inplace=True)
return weather[
(weather.temperature.diff() > 0) & (weather.recordDate.diff().dt.days == 1)
][["id"]]