一个整数数组 original
可以转变成一个 双倍 数组 changed
,转变方式为将 original
中每个元素 值乘以 2 加入数组中,然后将所有元素 随机打乱 。
给你一个数组 changed
,如果 change
是 双倍 数组,那么请你返回 original
数组,否则请返回空数组。original
的元素可以以 任意 顺序返回。
示例 1:
输入:changed = [1,3,4,2,6,8] 输出:[1,3,4] 解释:一个可能的 original 数组为 [1,3,4] : - 将 1 乘以 2 ,得到 1 * 2 = 2 。 - 将 3 乘以 2 ,得到 3 * 2 = 6 。 - 将 4 乘以 2 ,得到 4 * 2 = 8 。 其他可能的原数组方案为 [4,3,1] 或者 [3,1,4] 。
示例 2:
输入:changed = [6,3,0,1] 输出:[] 解释:changed 不是一个双倍数组。
示例 3:
输入:changed = [1] 输出:[] 解释:changed 不是一个双倍数组。
提示:
1 <= changed.length <= 105
0 <= changed[i] <= 105
class Solution:
def findOriginalArray(self, changed: List[int]) -> List[int]:
if len(changed) % 2 != 0:
return []
n = 100010
counter = [0] * n
for x in changed:
counter[x] += 1
if counter[0] % 2 != 0:
return []
res = [0] * (counter[0] // 2)
for i in range(1, n):
if counter[i] == 0:
continue
if i * 2 > n or counter[i] > counter[i*2]:
return []
res.extend([i] * counter[i])
counter[i*2] -= counter[i]
return res
class Solution {
public int[] findOriginalArray(int[] changed) {
if (changed.length % 2 != 0) {
return new int[]{};
}
int n = 100010;
int[] counter = new int[n];
for (int x : changed) {
++counter[x];
}
if (counter[0] % 2 != 0) {
return new int[]{};
}
int[] res = new int[changed.length / 2];
int j = counter[0] / 2;
for (int i = 1; i < n; ++i) {
if (counter[i] == 0) {
continue;
}
if (i * 2 >= n || counter[i] > counter[i * 2]) {
return new int[]{};
}
counter[i * 2] -= counter[i];
while (counter[i]-- > 0) {
res[j++] = i;
}
}
return res;
}
}
class Solution {
public:
vector<int> findOriginalArray(vector<int>& changed) {
if (changed.size() % 2 != 0) return {};
int n = 100010;
vector<int> counter(n);
for (int x : changed) ++counter[x];
if (counter[0] % 2 != 0) return {};
vector<int> res(changed.size() / 2);
int j = counter[0] / 2;
for (int i = 1; i < n; ++i) {
if (counter[i] == 0) continue;
if (i * 2 >= n || counter[i] > counter[i * 2]) return {};
counter[i * 2] -= counter[i];
while (counter[i]--) res[j++] = i;
}
return res;
}
};
func findOriginalArray(changed []int) []int {
if len(changed)%2 != 0 {
return []int{}
}
n := 100010
counter := make([]int, n)
for _, x := range changed {
counter[x]++
}
if counter[0]%2 != 0 {
return []int{}
}
var res []int
for j := 0; j < counter[0]/2; j++ {
res = append(res, 0)
}
for i := 1; i < n; i++ {
if counter[i] == 0 {
continue
}
if i*2 >= n || counter[i] > counter[i*2] {
return []int{}
}
for j := 0; j < counter[i]; j++ {
res = append(res, i)
}
counter[i*2] -= counter[i]
}
return res
}