The count-and-say sequence is a sequence of digit strings defined by the recursive formula:
countAndSay(1) = "1"
countAndSay(n)
is the way you would "say" the digit string fromcountAndSay(n-1)
, which is then converted into a different digit string.
To determine how you "say" a digit string, split it into the minimal number of substrings such that each substring contains exactly one unique digit. Then for each substring, say the number of digits, then say the digit. Finally, concatenate every said digit.
For example, the saying and conversion for digit string "3322251"
:
Given a positive integer n
, return the nth
term of the count-and-say sequence.
Example 1:
Input: n = 1 Output: "1" Explanation: This is the base case.
Example 2:
Input: n = 4 Output: "1211" Explanation: countAndSay(1) = "1" countAndSay(2) = say "1" = one 1 = "11" countAndSay(3) = say "11" = two 1's = "21" countAndSay(4) = say "21" = one 2 + one 1 = "12" + "11" = "1211"
Constraints:
1 <= n <= 30
Solution 1: Simulation
The task requires outputting the appearance sequence of the
Time Complexity:
- The outer loop runs
n - 1
times, iterating to generate the "Count and Say" sequence up to the nth term. - The inner while loop iterates through each character in the current string s and counts the consecutive occurrences of the same character.
- The inner while loop runs in
time, where m is the length of the current string s.
Overall, the time complexity is
Space Complexity:
class Solution:
def countAndSay(self, n: int) -> str:
s = '1'
for _ in range(n - 1):
i = 0
t = []
while i < len(s):
j = i
while j < len(s) and s[j] == s[i]:
j += 1
t.append(str(j - i))
t.append(str(s[i]))
i = j
s = ''.join(t)
return s
class Solution {
public String countAndSay(int n) {
String s = "1";
while (--n > 0) {
StringBuilder t = new StringBuilder();
for (int i = 0; i < s.length();) {
int j = i;
while (j < s.length() && s.charAt(j) == s.charAt(i)) {
++j;
}
t.append((j - i) + "");
t.append(s.charAt(i));
i = j;
}
s = t.toString();
}
return s;
}
}
class Solution {
public:
string countAndSay(int n) {
string s = "1";
while (--n) {
string t = "";
for (int i = 0; i < s.size();) {
int j = i;
while (j < s.size() && s[j] == s[i]) ++j;
t += to_string(j - i);
t += s[i];
i = j;
}
s = t;
}
return s;
}
};
func countAndSay(n int) string {
s := "1"
for k := 0; k < n-1; k++ {
t := &strings.Builder{}
i := 0
for i < len(s) {
j := i
for j < len(s) && s[j] == s[i] {
j++
}
t.WriteString(strconv.Itoa(j - i))
t.WriteByte(s[i])
i = j
}
s = t.String()
}
return s
}
using System.Text;
public class Solution {
public string CountAndSay(int n) {
var s = "1";
while (n > 1)
{
var sb = new StringBuilder();
var lastChar = '1';
var count = 0;
foreach (var ch in s)
{
if (count > 0 && lastChar == ch)
{
++count;
}
else
{
if (count > 0)
{
sb.Append(count);
sb.Append(lastChar);
}
lastChar = ch;
count = 1;
}
}
if (count > 0)
{
sb.Append(count);
sb.Append(lastChar);
}
s = sb.ToString();
--n;
}
return s;
}
}
const countAndSay = function (n) {
let s = '1';
for (let i = 2; i <= n; i++) {
let count = 1,
str = '',
len = s.length;
for (let j = 0; j < len; j++) {
if (j < len - 1 && s[j] === s[j + 1]) {
count++;
} else {
str += `${count}${s[j]}`;
count = 1;
}
}
s = str;
}
return s;
};
function countAndSay(n: number): string {
let s = '1';
for (let i = 1; i < n; i++) {
let t = '';
let cur = s[0];
let count = 1;
for (let j = 1; j < s.length; j++) {
if (s[j] !== cur) {
t += `${count}${cur}`;
cur = s[j];
count = 0;
}
count++;
}
t += `${count}${cur}`;
s = t;
}
return s;
}
use std::iter::once;
impl Solution {
pub fn count_and_say(n: i32) -> String {
(1..n)
.fold(vec![1], |curr, _| {
let mut next = vec![];
let mut slow = 0;
for fast in 0..=curr.len() {
if fast == curr.len() || curr[slow] != curr[fast] {
next.extend(once((fast - slow) as u8).chain(once(curr[slow])));
slow = fast;
}
}
next
})
.into_iter()
.map(|digit| (digit + b'0') as char)
.collect()
}
}