comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
Medium |
|
There are a total of numCourses
courses you have to take, labeled from 0
to numCourses - 1
. You are given an array prerequisites
where prerequisites[i] = [ai, bi]
indicates that you must take course bi
first if you want to take course ai
.
- For example, the pair
[0, 1]
, indicates that to take course0
you have to first take course1
.
Return true
if you can finish all courses. Otherwise, return false
.
Example 1:
Input: numCourses = 2, prerequisites = [[1,0]] Output: true Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
Example 2:
Input: numCourses = 2, prerequisites = [[1,0],[0,1]] Output: false Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Constraints:
1 <= numCourses <= 2000
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
- All the pairs prerequisites[i] are unique.
For this problem, we can consider the courses as nodes in a graph, and prerequisites as edges in the graph. Thus, we can transform this problem into determining whether there is a cycle in the directed graph.
Specifically, we can use the idea of topological sorting. For each node with an in-degree of
If all nodes have been traversed, it means there is no cycle in the graph, and we can complete all courses; otherwise, we cannot complete all courses.
The time complexity is
class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
g = [[] for _ in range(numCourses)]
indeg = [0] * numCourses
for a, b in prerequisites:
g[b].append(a)
indeg[a] += 1
q = [i for i, x in enumerate(indeg) if x == 0]
for i in q:
numCourses -= 1
for j in g[i]:
indeg[j] -= 1
if indeg[j] == 0:
q.append(j)
return numCourses == 0
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
List<Integer>[] g = new List[numCourses];
Arrays.setAll(g, k -> new ArrayList<>());
int[] indeg = new int[numCourses];
for (var p : prerequisites) {
int a = p[0], b = p[1];
g[b].add(a);
++indeg[a];
}
Deque<Integer> q = new ArrayDeque<>();
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.offer(i);
}
}
while (!q.isEmpty()) {
int i = q.poll();
--numCourses;
for (int j : g[i]) {
if (--indeg[j] == 0) {
q.offer(j);
}
}
}
return numCourses == 0;
}
}
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> g(numCourses);
vector<int> indeg(numCourses);
for (auto& p : prerequisites) {
int a = p[0], b = p[1];
g[b].push_back(a);
++indeg[a];
}
queue<int> q;
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.push(i);
}
}
while (!q.empty()) {
int i = q.front();
q.pop();
--numCourses;
for (int j : g[i]) {
if (--indeg[j] == 0) {
q.push(j);
}
}
}
return numCourses == 0;
}
};
func canFinish(numCourses int, prerequisites [][]int) bool {
g := make([][]int, numCourses)
indeg := make([]int, numCourses)
for _, p := range prerequisites {
a, b := p[0], p[1]
g[b] = append(g[b], a)
indeg[a]++
}
q := []int{}
for i, x := range indeg {
if x == 0 {
q = append(q, i)
}
}
for len(q) > 0 {
i := q[0]
q = q[1:]
numCourses--
for _, j := range g[i] {
indeg[j]--
if indeg[j] == 0 {
q = append(q, j)
}
}
}
return numCourses == 0
}
function canFinish(numCourses: number, prerequisites: number[][]): boolean {
const g: number[][] = Array.from({ length: numCourses }, () => []);
const indeg: number[] = Array(numCourses).fill(0);
for (const [a, b] of prerequisites) {
g[b].push(a);
indeg[a]++;
}
const q: number[] = [];
for (let i = 0; i < numCourses; ++i) {
if (indeg[i] === 0) {
q.push(i);
}
}
for (const i of q) {
--numCourses;
for (const j of g[i]) {
if (--indeg[j] === 0) {
q.push(j);
}
}
}
return numCourses === 0;
}
use std::collections::VecDeque;
impl Solution {
pub fn can_finish(mut num_courses: i32, prerequisites: Vec<Vec<i32>>) -> bool {
let mut g: Vec<Vec<i32>> = vec![vec![]; num_courses as usize];
let mut indeg: Vec<i32> = vec![0; num_courses as usize];
for p in prerequisites {
let a = p[0] as usize;
let b = p[1] as usize;
g[b].push(a as i32);
indeg[a] += 1;
}
let mut q: VecDeque<usize> = VecDeque::new();
for i in 0..num_courses {
if indeg[i as usize] == 0 {
q.push_back(i as usize);
}
}
while let Some(i) = q.pop_front() {
num_courses -= 1;
for &j in &g[i] {
let j = j as usize;
indeg[j] -= 1;
if indeg[j] == 0 {
q.push_back(j);
}
}
}
num_courses == 0
}
}
public class Solution {
public bool CanFinish(int numCourses, int[][] prerequisites) {
var g = new List<int>[numCourses];
for (int i = 0; i < numCourses; ++i) {
g[i] = new List<int>();
}
var indeg = new int[numCourses];
foreach (var p in prerequisites) {
int a = p[0], b = p[1];
g[b].Add(a);
++indeg[a];
}
var q = new Queue<int>();
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.Enqueue(i);
}
}
while (q.Count > 0) {
int i = q.Dequeue();
--numCourses;
foreach (int j in g[i]) {
if (--indeg[j] == 0) {
q.Enqueue(j);
}
}
}
return numCourses == 0;
}
}