Skip to content

Latest commit

 

History

History
223 lines (193 loc) · 5.85 KB

File metadata and controls

223 lines (193 loc) · 5.85 KB

中文文档

Description

Given an array of integers heights representing the histogram's bar height where the width of each bar is 1, return the area of the largest rectangle in the histogram.

 

Example 1:

Input: heights = [2,1,5,6,2,3]
Output: 10
Explanation: The above is a histogram where width of each bar is 1.
The largest rectangle is shown in the red area, which has an area = 10 units.

Example 2:

Input: heights = [2,4]
Output: 4

 

Constraints:

  • 1 <= heights.length <= 105
  • 0 <= heights[i] <= 104

Solutions

Python3

class Solution:
    def largestRectangleArea(self, heights: List[int]) -> int:
        n = len(heights)
        stk = []
        left = [-1] * n
        right = [n] * n
        for i, h in enumerate(heights):
            while stk and heights[stk[-1]] >= h:
                right[stk[-1]] = i
                stk.pop()
            if stk:
                left[i] = stk[-1]
            stk.append(i)
        return max(h * (right[i] - left[i] - 1) for i, h in enumerate(heights))
class Solution:
    def largestRectangleArea(self, heights: List[int]) -> int:
        n = len(heights)
        stk = []
        left = [-1] * n
        right = [n] * n
        for i, h in enumerate(heights):
            while stk and heights[stk[-1]] >= h:
                stk.pop()
            if stk:
                left[i] = stk[-1]
            stk.append(i)
        stk = []
        for i in range(n - 1, -1, -1):
            h = heights[i]
            while stk and heights[stk[-1]] >= h:
                stk.pop()
            if stk:
                right[i] = stk[-1]
            stk.append(i)
        return max(h * (right[i] - left[i] - 1) for i, h in enumerate(heights))

Java

class Solution {
    public int largestRectangleArea(int[] heights) {
        int res = 0, n = heights.length;
        Deque<Integer> stk = new ArrayDeque<>();
        int[] left = new int[n];
        int[] right = new int[n];
        Arrays.fill(right, n);
        for (int i = 0; i < n; ++i) {
            while (!stk.isEmpty() && heights[stk.peek()] >= heights[i]) {
                right[stk.pop()] = i;
            }
            left[i] = stk.isEmpty() ? -1 : stk.peek();
            stk.push(i);
        }
        for (int i = 0; i < n; ++i) {
            res = Math.max(res, heights[i] * (right[i] - left[i] - 1));
        }
        return res;
    }
}

C++

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        int res = 0, n = heights.size();
        stack<int> stk;
        vector<int> left(n, -1);
        vector<int> right(n, n);
        for (int i = 0; i < n; ++i) {
            while (!stk.empty() && heights[stk.top()] >= heights[i]) {
                right[stk.top()] = i;
                stk.pop();
            }
            if (!stk.empty()) left[i] = stk.top();
            stk.push(i);
        }
        for (int i = 0; i < n; ++i)
            res = max(res, heights[i] * (right[i] - left[i] - 1));
        return res;
    }
};

Rust

impl Solution {
    #[allow(dead_code)]
    pub fn largest_rectangle_area(heights: Vec<i32>) -> i32 {
        let n = heights.len();
        let mut left = vec![-1; n];
        let mut right = vec![-1; n];
        let mut stack: Vec<(usize, i32)> = Vec::new();
        let mut ret = -1;

        // Build left vector
        for (i, h) in heights.iter().enumerate() {
            while !stack.is_empty() && stack.last().unwrap().1 >= *h {
                stack.pop();
            }
            if stack.is_empty() {
                left[i] = -1;
            } else {
                left[i] = stack.last().unwrap().0 as i32;
            }
            stack.push((i, *h));
        }

        stack.clear();

        // Build right vector
        for (i, h) in heights.iter().enumerate().rev() {
            while !stack.is_empty() && stack.last().unwrap().1 >= *h {
                stack.pop();
            }
            if stack.is_empty() {
                right[i] = n as i32;
            } else {
                right[i] = stack.last().unwrap().0 as i32;
            }
            stack.push((i, *h));
        }

        // Calculate the max area
        for (i, h) in heights.iter().enumerate() {
            ret = std::cmp::max(ret, (right[i] - left[i] - 1) * *h);
        }

        ret
    }
}

Go

func largestRectangleArea(heights []int) int {
	res, n := 0, len(heights)
	var stk []int
	left, right := make([]int, n), make([]int, n)
	for i := range right {
		right[i] = n
	}
	for i, h := range heights {
		for len(stk) > 0 && heights[stk[len(stk)-1]] >= h {
			right[stk[len(stk)-1]] = i
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			left[i] = stk[len(stk)-1]
		} else {
			left[i] = -1
		}
		stk = append(stk, i)
	}
	for i, h := range heights {
		res = max(res, h*(right[i]-left[i]-1))
	}
	return res
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

...