-
-
Notifications
You must be signed in to change notification settings - Fork 9k
/
Copy pathSolution.cpp
95 lines (86 loc) · 2.33 KB
/
Solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
class Node {
public:
int l, r;
long long s00, s01, s10, s11;
Node(int l, int r)
: l(l)
, r(r)
, s00(0)
, s01(0)
, s10(0)
, s11(0) {}
};
class SegmentTree {
public:
vector<Node*> tr;
SegmentTree(int n)
: tr(n << 2) {
build(1, 1, n);
}
void build(int u, int l, int r) {
tr[u] = new Node(l, r);
if (l == r) {
return;
}
int mid = (l + r) >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
}
long long query(int u, int l, int r) {
if (tr[u]->l >= l && tr[u]->r <= r) {
return tr[u]->s11;
}
int mid = (tr[u]->l + tr[u]->r) >> 1;
long long ans = 0;
if (r <= mid) {
ans = query(u << 1, l, r);
}
if (l > mid) {
ans = max(ans, query(u << 1 | 1, l, r));
}
return ans;
}
void pushup(int u) {
Node* left = tr[u << 1];
Node* right = tr[u << 1 | 1];
tr[u]->s00 = max(left->s00 + right->s10, left->s01 + right->s00);
tr[u]->s01 = max(left->s00 + right->s11, left->s01 + right->s01);
tr[u]->s10 = max(left->s10 + right->s10, left->s11 + right->s00);
tr[u]->s11 = max(left->s10 + right->s11, left->s11 + right->s01);
}
void modify(int u, int x, int v) {
if (tr[u]->l == tr[u]->r) {
tr[u]->s11 = max(0LL, (long long) v);
return;
}
int mid = (tr[u]->l + tr[u]->r) >> 1;
if (x <= mid) {
modify(u << 1, x, v);
} else {
modify(u << 1 | 1, x, v);
}
pushup(u);
}
~SegmentTree() {
for (auto node : tr) {
delete node;
}
}
};
class Solution {
public:
int maximumSumSubsequence(vector<int>& nums, vector<vector<int>>& queries) {
int n = nums.size();
SegmentTree tree(n);
for (int i = 0; i < n; ++i) {
tree.modify(1, i + 1, nums[i]);
}
long long ans = 0;
const int mod = 1e9 + 7;
for (const auto& q : queries) {
tree.modify(1, q[0] + 1, q[1]);
ans = (ans + tree.query(1, 1, n)) % mod;
}
return (int) ans;
}
};