-
Notifications
You must be signed in to change notification settings - Fork 374
/
Copy pathpose_estimator.py
153 lines (123 loc) · 5.81 KB
/
pose_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author: Donny You (youansheng@gmail.com)
# Class Definition for Pose Estimator.
import time
import torch
from data.pose.data_loader import DataLoader
from lib.runner.runner_helper import RunnerHelper
from lib.runner.trainer import Trainer
from model.pose.model_manager import ModelManager
from lib.tools.helper.dc_helper import DCHelper
from lib.tools.util.average_meter import AverageMeter, DictAverageMeter
from lib.tools.util.logger import Logger as Log
from lib.tools.vis.pose_visualizer import PoseVisualizer
class PoseEstimator(object):
"""
The class for Pose Estimation. Include train, val, test & predict.
"""
def __init__(self, configer):
self.configer = configer
self.batch_time = AverageMeter()
self.data_time = AverageMeter()
self.train_losses = DictAverageMeter()
self.val_losses = DictAverageMeter()
self.pose_visualizer = PoseVisualizer(configer)
self.pose_model_manager = ModelManager(configer)
self.pose_data_loader = DataLoader(configer)
self.pose_net = None
self.train_loader = None
self.val_loader = None
self.optimizer = None
self.scheduler = None
self.runner_state = dict()
self._init_model()
def _init_model(self):
self.pose_net = self.pose_model_manager.get_pose_model()
self.pose_net = RunnerHelper.load_net(self, self.pose_net)
self.optimizer, self.scheduler = Trainer.init(self._get_parameters(), self.configer.get('solver'))
self.train_loader = self.pose_data_loader.get_trainloader()
self.val_loader = self.pose_data_loader.get_valloader()
self.pose_loss = self.pose_model_manager.get_pose_loss()
def _get_parameters(self):
lr_1 = []
lr_2 = []
params_dict = dict(self.pose_net.named_parameters())
for key, value in params_dict.items():
if 'backbone' not in key:
lr_2.append(value)
else:
lr_1.append(value)
params = [{'params': lr_1, 'lr': self.configer.get('solver', 'lr')['base_lr'], 'weight_decay': 0.0},
{'params': lr_2, 'lr': self.configer.get('solver', 'lr')['base_lr'], 'weight_decay': 0.0},]
return params
def train(self):
"""
Train function of every epoch during train phase.
"""
self.pose_net.train()
start_time = time.time()
# Adjust the learning rate after every epoch.
self.runner_state['epoch'] += 1
for i, data_dict in enumerate(self.train_loader):
Trainer.update(self, warm_list=(0,), solver_dict=self.configer.get('solver'))
self.data_time.update(time.time() - start_time)
# Forward pass.
out = self.pose_net(data_dict)
# Compute the loss of the train batch & backward.
loss_dict = self.pose_loss(out)
loss = loss_dict['loss']
self.train_losses.update({key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# Update the vars of the train phase.
self.batch_time.update(time.time() - start_time)
start_time = time.time()
self.runner_state['iters'] += 1
# Print the log info & reset the states.
if self.runner_state['iters'] % self.configer.get('solver', 'display_iter') == 0:
Log.info('Train Epoch: {0}\tTrain Iteration: {1}\t'
'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
'Learning rate = {4}\tLoss = {3}\n'.format(
self.runner_state['epoch'], self.runner_state['iters'],
self.configer.get('solver', 'display_iter'), self.train_losses.info(),
RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time))
self.batch_time.reset()
self.data_time.reset()
self.train_losses.reset()
if self.configer.get('solver', 'lr')['metric'] == 'iters' \
and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'):
break
# Check to val the current model.
if self.runner_state['iters'] % self.configer.get('solver', 'test_interval') == 0:
self.val()
def val(self):
"""
Validation function during the train phase.
"""
self.pose_net.eval()
start_time = time.time()
with torch.no_grad():
for i, data_dict in enumerate(self.val_loader):
# Forward pass.
out = self.pose_net(data_dict)
# Compute the loss of the val batch.
loss_dict = self.pose_loss(out)
self.val_losses.update({key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0))
# Update the vars of the val phase.
self.batch_time.update(time.time() - start_time)
start_time = time.time()
self.runner_state['val_loss'] = self.val_losses.avg['loss']
RunnerHelper.save_net(self, self.pose_net, val_loss=self.val_losses.avg['loss'])
# Print the log info & reset the states.
Log.info(
'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
'Loss {0}\n'.format(self.val_losses.info(), batch_time=self.batch_time))
self.batch_time.reset()
self.val_losses.reset()
self.pose_net.train()
if __name__ == "__main__":
# Test class for pose estimator.
pass