@@ -156,7 +156,7 @@ it has not been extensively tested beyond the PDF.
156156It runs on Windows, Mac OS, Linux, and all major Unix systems.
157157The source code is freely available at @url {https://github.com/diffpy/diffpy.pdfmorph }.
158158
159- If you come accross any bugs in the application, please open an
159+ If you come across any bugs in the application, please open an
160160@url {https://github.com/diffpy/diffpy.pdfmorph/issues , issue } or email
161161diffpy-dev@@ googlegroups.com.
162162
@@ -440,8 +440,8 @@ extra tutorial data @code{additionalData.zip}} before proceeding.
440440@cindex performing multiple morphs
441441
442442It may be useful to morph a PDF against multiple targets: for example, you may want
443- to morph a PDF against a sequence of PDFs measured at various temepratures to determine
444- whether a phase change has occured . PDFmorph currently allows users to morph a PDF
443+ to morph a PDF against a sequence of PDFs measured at various temperatures to determine
444+ whether a phase change has occurred . PDFmorph currently allows users to morph a PDF
445445against all files in a selected directory and plot resulting @math {R_W } values from each morph.
446446It is advised that the lowest temperature PDF be that morphed and the higher temperature PDFs
447447act as targets as the smear morph is only able to account for increases in thermal motion.
@@ -619,15 +619,15 @@ Again, we can begin by plotting the bulk material against our nanoparticle.
619619@example
620620pdfmorph Ni_bulk.gr Ni_nano_spheroid.cgr
621621@end example
622- @item The nanoparticle shape of the calculated PDF is an oblate spheroid with equitorial
622+ @item The nanoparticle shape of the calculated PDF is an oblate spheroid with equatorial
623623radius of about @math {12 } and polar radius of about @math {6 } (this information is contained
624624within the @code {Ni_nano_spheroid.cgr } file). To apply the spheroidal shape effects onto the
625625bulk, run
626626@example
627627pdfmorph Ni_bulk.gr Ni_nano_spheroid.cgr -- radius=12 -- pradius=6 -a
628628@end example
629629@itemize
630- @item The @code {--radius } option corresponds to the equitorial radius.
630+ @item The @code {--radius } option corresponds to the equatorial radius.
631631@item The @code {--pradius } option corresponds to the polar radius.
632632@end itemize
633633@item Run the same command without @code {-a } to refine. Refining should give
@@ -792,24 +792,24 @@ using atomic pair distribution function analysis. Phys. Rev. B, 76(11), 115413.
792792The available shape morphs are listed below:
793793@itemize
794794@item @code {--radius=RADIUS } - Multiply the PDF by the nanoparticle form factor for a sphere of radius @code {RADIUS }.
795- If used with @code {--pradius }, multiply the PDF by the nanoparticle form factor for a spheroid of equitorial radius
795+ If used with @code {--pradius }, multiply the PDF by the nanoparticle form factor for a spheroid of equatorial radius
796796@code {RADIUS } and polar radius @code {PRADIUS }.
797797@itemize
798798@item The sphere form factor was computed by Kodama et al. @footnote {Kodama , K. , Iikubo , S. , Taguchi , T. , &
799799Shamoto , S. (2006). Finite size effects of nanoparticles on the atomic pair distribution functions.
800800Acta Crystallographica Section A , 62(6) , 444–453. @url {https://doi.org/10.1107/S0108767306034635 }}.
801801@end itemize
802- @item @code {--pradius=PRADIUS } - Multiply the PDF by the nanoparticle form factor for a spheroid of equitorial radius
802+ @item @code {--pradius=PRADIUS } - Multiply the PDF by the nanoparticle form factor for a spheroid of equatorial radius
803803@code {RADIUS } and polar radius @code {PRADIUS }.
804804@itemize
805805@item The spheroid form factor was computed by Lei et al. @footnote {Lei , M. , de Graff , A. M. R. , Thorpe , M. F. , Wells ,
806806S. A. , & Sartbaeva , A. (2009). Uncovering the intrinsic geometry from the atomic pair distribution function of
807807nanomaterials. Phys. Rev. B , 80(2) , 024118. @url {https://doi.org/10.1103/PhysRevB.80.024118 }}.
808808@end itemize
809809@item @code {--iradius=IRADIUS } - Divide the PDF by the nanoparticle form factor for a sphere of radius @code {IRADIUS }.
810- If used with @code {--ipradius }, divide the PDF by the nanoparticle form factor for a spheroid of equitorial radius
810+ If used with @code {--ipradius }, divide the PDF by the nanoparticle form factor for a spheroid of equatorial radius
811811@code {IRADIUS } and polar radius @code {IPRADIUS }.
812- @item @code {--ipradius=IPRADIUS } - Divide the PDF by the nanoparticle form factor for a spheroid of equitorial radius
812+ @item @code {--ipradius=IPRADIUS } - Divide the PDF by the nanoparticle form factor for a spheroid of equatorial radius
813813@code {IRADIUS } and polar radius @code {IPRADIUS }.
814814@end itemize
815815
@@ -842,7 +842,7 @@ post-expansion. The volume of the nanoparticle also increases by a factor @math{
842842@displaymath
843843\gamma'_0(\vec{r}) = {1 \over {\alpha^3 V}} \int \int \int s'(\vec{r}')s'(\vec{r}'+\vec{r})d\vec{r}'.
844844@end displaymath
845- Aplying a change of variables @math {\vec {r }' \rightarrow \vec{r}' / \alpha} gives
845+ Applying a change of variables @math {\vec {r }' \rightarrow \vec{r}' / \alpha} gives
846846@displaymath
847847\gamma'_0(\vec{r}) = {1 \over {\alpha^3 V}} \int \int \int s'(\alpha \vec{r}')s'(\alpha \vec{r}'+\vec{r})\alpha^3d\vec{r}',
848848@end displaymath
@@ -963,7 +963,7 @@ requires us to apply a Gaussian dampening envelope centered at @math{r=0} with w
963963@noindent @code {--radius=RADIUS }
964964@* @indent Apply the nanoparticle form factor @math {\gamma_0 } for a sphere of radius @code {RADIUS }.
965965If @code {PRADIUS } is also specified, instead apply the characteristic function of a spheroid with
966- equitorial radius @code {RADIUS } and polar radius @code {PRADIUS }.
966+ equatorial radius @code {RADIUS } and polar radius @code {PRADIUS }.
967967
968968@noindent @code {--pradius=PRADIUS }
969969@* @indent If @code {RADIUS } is also specified, see @code {--radius }. Otherwise, apply the characteristic
@@ -972,7 +972,7 @@ function of a sphere with radius @code{PRADIUS}.
972972@noindent @code {--iradius=IRADIUS }
973973@* @indent Apply the inverse characteristic function @math {1/\gamma_0 } of a sphere of radius @code {IRADIUS }/
974974If @code {IPRADIUS } is also specified, instead apply the characteristic function of a spheroid with
975- equitorial radius @code {IRADIUS } and polar radius @code {PRADIUS }.
975+ equatorial radius @code {IRADIUS } and polar radius @code {PRADIUS }.
976976
977977@noindent @code {--ipradius=IPRADIUS }
978978@* @indent If @code {IRADIUS } is also specified, see @code {--iradius }. Otherwise, apply the characteristic
0 commit comments