Skip to content

Commit 807feb6

Browse files
更新两个译名,便于理解fp和fn (#62)
我们关心的指标是假正例率(false positive rate,又译作假阳率,误诊率)—— 用户没有说出唤醒词,系统却被唤醒了,以及假反例率(false negative rate,又译作假阴率,漏诊率)
1 parent 8952092 commit 807feb6

File tree

1 file changed

+1
-1
lines changed
  • _docs/Setting up development and test sets

1 file changed

+1
-1
lines changed

_docs/Setting up development and test sets/ch09.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,6 @@ $$
2323

2424
如果要考虑 $ N $ 项不同的标准,比如模型的二进制文件大小(这对移动端 app 尤为重要,因为用户不想下载体积很大的 app)、运行时间和准确率,你或许需要设置 $ N-1 $ 个 “满意度” 指标,即先要求它们满足一定的值或范围,下一步才是定义一个 “优化” 指标。例如分别为二进制文件的大小和运行时间设定可接受的阈值,并尝试根据这些限制来优化准确率指标。
2525

26-
最后再举一个例子,假设你正在设计一个硬件设备,该设备可以根据用户设置的特殊 “唤醒词” 来唤醒系统,类似于 Amazon Echo 的监听词为 “Alexa”,苹果(Apple) Siri 的监听词为 “Hey Siri”,安卓(Android) 的监听词为 “Okay Google”,以及百度(Baidu)应用的监听词 “Hello Baidu.” 我们关心的指标是假正例率(false positive rate)—— 用户没有说出唤醒词,系统却被唤醒了,以及假反例率(false negative rate)——用户说出了唤醒词,系统却没能正确被唤醒。这个系统的一个较为合理的优化对象是尝试去最小化假反例率(优化指标),减少用户说出唤醒词而系统却没能正确唤醒的发生率,同时设置约束为每 24 小时不超过一次误报(满意度指标)。
26+
最后再举一个例子,假设你正在设计一个硬件设备,该设备可以根据用户设置的特殊 “唤醒词” 来唤醒系统,类似于 Amazon Echo 的监听词为 “Alexa”,苹果(Apple) Siri 的监听词为 “Hey Siri”,安卓(Android) 的监听词为 “Okay Google”,以及百度(Baidu)应用的监听词 “Hello Baidu.” 我们关心的指标是假正例率(false positive rate,又译作假阳率,误诊率)—— 用户没有说出唤醒词,系统却被唤醒了,以及假反例率(false negative rate,又译作假阴率,漏诊率)——用户说出了唤醒词,系统却没能正确被唤醒。这个系统的一个较为合理的优化对象是尝试去最小化假反例率(优化指标),减少用户说出唤醒词而系统却没能正确唤醒的发生率,同时设置约束为每 24 小时不超过一次误报(满意度指标)。
2727

2828
一旦你的团队在优化评估指标上保持一致,他们将能够取得更快的进展。

0 commit comments

Comments
 (0)