Skip to content

deep-learning-algorithm/PyNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Numpy-based deep learning library

中文版本(Chinese version)

Convolutional neural network based on numpy, modular design guarantees easy implementation of the model, which is suitable for the introduction of junior researchers in deep learning.

A PyTorch example is also included.

Features

Realized Network Model(Located on the pynet/models):

  • 2-Layer Neural Network
  • 3-Layer Neural Network
  • LeNet-5
  • AlexNet
  • NIN

Realized Network Layer(Located on the pynet/nn):

  • Convolution Layer (Conv2d)
  • Fully-Connection Layer (FC)
  • Max-Pooling layer (MaxPool)
  • ReLU Layer (ReLU)
  • Random Dropout Layer (Dropout/Dropout2d)
  • Softmax
  • Cross Entropy Loss
  • Gloabl Average Pool (GAP)

Catalog

.
├── examples                          # pynet使用示例
│   ├── 2_nn_xor.py
│   ├── 3_nn_cifar10.py
│   ├── 3_nn_iris.py
│   ├── 3_nn_orl.py
│   ├── lenet5_mnist.py
│   ├── nin_cifar10.py
│   └── nin_cifar10_pytorch.py
├── plt                               # 绘图相关(待调整)
│   ├── anneal_plt.py
│   ├── lenet5_plt.py
│   └── plt.py
├── pynet                             # PyNet库
│   ├── __init__.py
│   ├── models                        # 模型定义
│   ├── nn                            # 层定义
│   └── vision                        # 数据操作
├── pytorch                           # PyTorch使用示例
│   ├── examples                      
│   ├── models                        # 模型定义
│   └── vision                        # 数据操作

Versioning

We use SemVer for versioning. For the versions available, see the tags on this repository.

Authors

  • zhujian - Initial work - zjZSTU

License

This project is licensed under the Apache License v2.0 - see the LICENSE file for details