|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +# @Time : 19-6-21 上午11:00 |
| 4 | +# @Author : zj |
| 5 | + |
| 6 | + |
| 7 | +import nn |
| 8 | +from .Net import Net |
| 9 | +from .utils import load_params |
| 10 | + |
| 11 | +__all__ = ['NIN', 'nin'] |
| 12 | + |
| 13 | +model_urls = { |
| 14 | + 'nin': '' |
| 15 | +} |
| 16 | + |
| 17 | + |
| 18 | +class NIN(Net): |
| 19 | + """ |
| 20 | + NIN网络 |
| 21 | + """ |
| 22 | + |
| 23 | + def __init__(self, in_channels=1, out_channels=10, momentum=0, nesterov=False, p_h=1.0): |
| 24 | + super(NIN, self).__init__() |
| 25 | + self.conv1 = nn.Conv2d(in_channels, 5, 5, 192, stride=1, padding=2, momentum=momentum, nesterov=nesterov) |
| 26 | + self.conv2 = nn.Conv2d(96, 5, 5, 192, stride=1, padding=2, momentum=momentum, nesterov=nesterov) |
| 27 | + self.conv3 = nn.Conv2d(192, 3, 3, 192, stride=1, padding=1, momentum=momentum, nesterov=nesterov) |
| 28 | + |
| 29 | + self.mlp1 = nn.Conv2d(192, 1, 1, 160, stride=1, padding=0, momentum=momentum, nesterov=nesterov) |
| 30 | + self.mlp2 = nn.Conv2d(160, 1, 1, 96, stride=1, padding=0, momentum=momentum, nesterov=nesterov) |
| 31 | + |
| 32 | + self.mlp2_1 = nn.Conv2d(192, 1, 1, 192, stride=1, padding=0, momentum=momentum, nesterov=nesterov) |
| 33 | + self.mlp2_2 = nn.Conv2d(192, 1, 1, 192, stride=1, padding=0, momentum=momentum, nesterov=nesterov) |
| 34 | + |
| 35 | + self.mlp3_1 = nn.Conv2d(192, 1, 1, 192, stride=1, padding=0, momentum=momentum, nesterov=nesterov) |
| 36 | + self.mlp3_2 = nn.Conv2d(192, 1, 1, out_channels, stride=1, padding=0, momentum=momentum, nesterov=nesterov) |
| 37 | + |
| 38 | + self.maxPool1 = nn.MaxPool(2, 2, 96, stride=2) |
| 39 | + self.maxPool2 = nn.MaxPool(2, 2, 192, stride=2) |
| 40 | + |
| 41 | + self.gap = nn.GAP() |
| 42 | + |
| 43 | + self.relu1 = nn.ReLU() |
| 44 | + self.relu2 = nn.ReLU() |
| 45 | + self.relu3 = nn.ReLU() |
| 46 | + self.relu4 = nn.ReLU() |
| 47 | + self.relu5 = nn.ReLU() |
| 48 | + self.relu6 = nn.ReLU() |
| 49 | + self.relu7 = nn.ReLU() |
| 50 | + self.relu8 = nn.ReLU() |
| 51 | + self.relu9 = nn.ReLU() |
| 52 | + |
| 53 | + self.dropout = nn.Dropout() |
| 54 | + |
| 55 | + self.p_h = p_h |
| 56 | + self.U1 = None |
| 57 | + self.U2 = None |
| 58 | + |
| 59 | + def __call__(self, inputs): |
| 60 | + return self.forward(inputs) |
| 61 | + |
| 62 | + def forward(self, inputs): |
| 63 | + # inputs.shape = [N, C, H, W] |
| 64 | + assert len(inputs.shape) == 4 |
| 65 | + x = self.relu1(self.conv1(inputs)) |
| 66 | + x = self.relu2(self.mlp1(x)) |
| 67 | + x = self.relu3(self.mlp2(x)) |
| 68 | + x = self.maxPool1(x) |
| 69 | + self.U1 = self.dropout(x.shape, self.p_h) |
| 70 | + x *= self.U1 |
| 71 | + |
| 72 | + x = self.relu4(self.conv2(x)) |
| 73 | + x = self.relu5(self.mlp2_1(x)) |
| 74 | + x = self.relu6(self.mlp2_2(x)) |
| 75 | + x = self.maxPool2(x) |
| 76 | + self.U2 = self.dropout(x.shape, self.p_h) |
| 77 | + x *= self.U2 |
| 78 | + |
| 79 | + x = self.relu7(self.conv3(x)) |
| 80 | + x = self.relu8(self.mlp3_1(x)) |
| 81 | + x = self.relu9(self.mlp3_2(x)) |
| 82 | + |
| 83 | + x = self.gap(x) |
| 84 | + return x |
| 85 | + |
| 86 | + def backward(self, grad_out): |
| 87 | + # grad_out.shape = [N, C] |
| 88 | + assert len(grad_out) == 2 |
| 89 | + da11 = self.gap.backward(grad_out) |
| 90 | + |
| 91 | + dz11 = self.relu9.backward(da11) |
| 92 | + da10 = self.mlp3_2.backward(dz11) |
| 93 | + dz10 = self.relu8.backward(da10) |
| 94 | + da9 = self.mlp3_1.backward(dz10) |
| 95 | + dz9 = self.relu7.backward(da9) |
| 96 | + da8 = self.conv3.backward(dz9) |
| 97 | + |
| 98 | + da8 *= self.U2 |
| 99 | + da7 = self.maxPool2.backward(da8) |
| 100 | + dz7 = self.relu6.backward(da7) |
| 101 | + da6 = self.mlp2_2.backward(dz7) |
| 102 | + dz6 = self.relu5.backward(da6) |
| 103 | + da5 = self.mlp2_1.backward(dz6) |
| 104 | + dz5 = self.relu4.backward(da5) |
| 105 | + da4 = self.conv2.backward(dz5) |
| 106 | + |
| 107 | + da4 *= self.U1 |
| 108 | + da3 = self.maxPool1.backward(da4) |
| 109 | + dz3 = self.relu3.backward(da3) |
| 110 | + da2 = self.mlp2.backward(dz3) |
| 111 | + dz2 = self.relu2.backward(da2) |
| 112 | + da1 = self.mlp1.backward(dz2) |
| 113 | + dz1 = self.relu1.backward(da1) |
| 114 | + da0 = self.conv1.backward(dz1) |
| 115 | + |
| 116 | + def update(self, lr=1e-3, reg=1e-3): |
| 117 | + self.mlp3_2.update(learning_rate=lr, regularization_rate=reg) |
| 118 | + self.mlp3_1.update(learning_rate=lr, regularization_rate=reg) |
| 119 | + self.conv3.update(learning_rate=lr, regularization_rate=reg) |
| 120 | + |
| 121 | + self.mlp2_2.update(learning_rate=lr, regularization_rate=reg) |
| 122 | + self.mlp2_1.update(learning_rate=lr, regularization_rate=reg) |
| 123 | + self.conv2.update(learning_rate=lr, regularization_rate=reg) |
| 124 | + |
| 125 | + self.mlp2.update(learning_rate=lr, regularization_rate=reg) |
| 126 | + self.mlp1.update(learning_rate=lr, regularization_rate=reg) |
| 127 | + self.conv1.update(learning_rate=lr, regularization_rate=reg) |
| 128 | + |
| 129 | + def predict(self, inputs): |
| 130 | + # inputs.shape = [N, C, H, W] |
| 131 | + assert len(inputs.shape) == 4 |
| 132 | + x = self.relu1(self.conv1(inputs)) |
| 133 | + x = self.relu2(self.mlp1(x)) |
| 134 | + x = self.relu3(self.mlp2(x)) |
| 135 | + x = self.maxPool1(x) |
| 136 | + |
| 137 | + x = self.relu4(self.conv2(x)) |
| 138 | + x = self.relu5(self.mlp2_1(x)) |
| 139 | + x = self.relu6(self.mlp2_2(x)) |
| 140 | + x = self.maxPool2(x) |
| 141 | + |
| 142 | + x = self.relu7(self.conv3(x)) |
| 143 | + x = self.relu8(self.mlp3_1(x)) |
| 144 | + x = self.relu9(self.mlp3_2(x)) |
| 145 | + |
| 146 | + x = self.gap(x) |
| 147 | + return x |
| 148 | + |
| 149 | + def get_params(self): |
| 150 | + out = dict() |
| 151 | + out['conv1'] = self.conv1.get_params() |
| 152 | + out['conv2'] = self.conv2.get_params() |
| 153 | + out['conv3'] = self.conv3.get_params() |
| 154 | + |
| 155 | + out['mlp1'] = self.mlp1.get_params() |
| 156 | + out['mlp2'] = self.mlp2.get_params() |
| 157 | + out['mlp2_1'] = self.mlp2_1.get_params() |
| 158 | + out['mlp2_2'] = self.mlp2_2.get_params() |
| 159 | + out['mlp3_1'] = self.mlp3_1.get_params() |
| 160 | + out['mlp3_2'] = self.mlp3_2.get_params() |
| 161 | + |
| 162 | + out['p_h'] = self.p_h |
| 163 | + |
| 164 | + return out |
| 165 | + |
| 166 | + def set_params(self, params): |
| 167 | + self.conv1.set_params(params['conv1']) |
| 168 | + self.conv2.set_params(params['conv2']) |
| 169 | + self.conv3.set_params(params['conv3']) |
| 170 | + |
| 171 | + self.mlp1.set_params(params['mlp1']) |
| 172 | + self.mlp2.set_params(params['mlp2']) |
| 173 | + self.mlp2_1.set_params(params['mlp2_1']) |
| 174 | + self.mlp2_2.set_params(params['mlp2_1']) |
| 175 | + self.mlp3_1.set_params(params['mlp3_1']) |
| 176 | + self.mlp3_2.set_params(params['mlp3_1']) |
| 177 | + |
| 178 | + self.p_h = params.get('p_h', 1.0) |
| 179 | + |
| 180 | + |
| 181 | +def nin(pretrained=False, **kwargs): |
| 182 | + """ |
| 183 | + 创建模型对象 |
| 184 | + """ |
| 185 | + |
| 186 | + model = NIN(**kwargs) |
| 187 | + if pretrained: |
| 188 | + params = load_params(model_urls['nin']) |
| 189 | + model.set_params(params) |
| 190 | + return model |
0 commit comments