|
3 | 3 | # @Time : 19-5-27 下午6:39
|
4 | 4 | # @Author : zj
|
5 | 5 |
|
6 |
| -import pynet.models.utils |
7 |
| -import pynet.vision.data |
8 | 6 | from pynet import nn, models, vision
|
| 7 | +from pynet.vision.data import xor |
9 | 8 | import numpy as np
|
10 | 9 | import os
|
11 | 10 |
|
|
17 | 16 | def two_layer_train():
|
18 | 17 | net = models.two_layer_net(num_in=2, num_hidden=6, num_out=2)
|
19 | 18 |
|
20 |
| - input_array, xor_array = pynet.vision.data.load_xor() |
| 19 | + input_array, xor_array = xor.load_xor() |
21 | 20 |
|
22 | 21 | criterion = nn.CrossEntropyLoss()
|
23 | 22 |
|
@@ -51,16 +50,16 @@ def two_layer_train():
|
51 | 50 | params = net.get_params()
|
52 | 51 | print('FC1: {}'.format(params['fc1']))
|
53 | 52 | print('FC2: {}'.format(params['fc2']))
|
54 |
| - pynet.models.utils.save_params(params, path=os.path.join(os.getcwd(), 'two_layer_net.pkl')) |
| 53 | + # models.utils.save_params(params, path=os.path.join('/home/zj/deeplearning/pkl/', 'two_layer_net.pkl')) |
55 | 54 |
|
56 | 55 |
|
57 | 56 | def two_layer_test():
|
58 |
| - params = pynet.models.utils.load_params(os.path.join(os.getcwd(), 'two_layer_net.pkl')) |
| 57 | + params = models.utils.load_params(os.path.join(os.getcwd(), 'two_layer_net.pkl')) |
59 | 58 | print(params)
|
60 | 59 | net = models.two_layer_net(num_in=2, num_hidden=6, num_out=2)
|
61 | 60 | net.set_params(params)
|
62 | 61 |
|
63 |
| - input_array, xor_array = pynet.vision.data.load_xor() |
| 62 | + input_array, xor_array = xor.load_xor() |
64 | 63 |
|
65 | 64 | for item in input_array:
|
66 | 65 | print(net.forward(np.atleast_2d(item)))
|
|
0 commit comments