|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +""" |
| 4 | +@date: 2020/4/28 上午10:32 |
| 5 | +@file: accuracy.py |
| 6 | +@author: zj |
| 7 | +@description: 计算Top-1 correct rate |
| 8 | +""" |
| 9 | + |
| 10 | +import torch |
| 11 | +from torch.utils.data import DataLoader |
| 12 | +from torchvision.models import alexnet |
| 13 | +from torchvision.datasets import CIFAR10 |
| 14 | +import torchvision.transforms as transforms |
| 15 | + |
| 16 | +from utils import util |
| 17 | + |
| 18 | + |
| 19 | +def accuracy(data_loader, model, device=None): |
| 20 | + if device: |
| 21 | + model = model.to(device) |
| 22 | + |
| 23 | + running_corrects = 0 |
| 24 | + for inputs, targets in data_loader: |
| 25 | + if device: |
| 26 | + inputs = inputs.to(device) |
| 27 | + targets = targets.to(device) |
| 28 | + |
| 29 | + # forward |
| 30 | + # track history if only in train |
| 31 | + with torch.set_grad_enabled(False): |
| 32 | + outputs = model(inputs) |
| 33 | + # print(outputs.shape) |
| 34 | + _, preds = torch.max(outputs, 1) |
| 35 | + |
| 36 | + # statistics |
| 37 | + running_corrects += torch.sum(preds == targets.data) |
| 38 | + |
| 39 | + epoch_acc = running_corrects.double() / len(data_loader.dataset) |
| 40 | + return epoch_acc |
| 41 | + |
| 42 | + |
| 43 | +if __name__ == '__main__': |
| 44 | + transform = transforms.Compose([ |
| 45 | + transforms.Resize(224, 224), |
| 46 | + transforms.ToTensor(), |
| 47 | + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
| 48 | + ]) |
| 49 | + |
| 50 | + # 提取测试集 |
| 51 | + data_set = CIFAR10('./data', download=True, train=False, transform=transform) |
| 52 | + data_loader = DataLoader(data_set, shuffle=True, batch_size=128, num_workers=8) |
| 53 | + |
| 54 | + num_classes = 10 |
| 55 | + model = alexnet(num_classes=num_classes) |
| 56 | + |
| 57 | + device = util.get_device() |
| 58 | + acc = accuracy(data_loader, model, device=device) |
| 59 | + print('acc: {:.3f}'.format(acc)) |
0 commit comments