-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathtoken.go
193 lines (181 loc) · 5.99 KB
/
token.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
package common
import (
"errors"
"fmt"
logger "genspark2api/common/loggger"
"genspark2api/model"
"github.com/pkoukk/tiktoken-go"
"strings"
)
// tokenEncoderMap won't grow after initialization
var tokenEncoderMap = map[string]*tiktoken.Tiktoken{}
var defaultTokenEncoder *tiktoken.Tiktoken
func InitTokenEncoders() {
logger.SysLog("initializing token encoders...")
gpt35TokenEncoder, err := tiktoken.EncodingForModel("gpt-3.5-turbo")
if err != nil {
logger.FatalLog(fmt.Sprintf("failed to get gpt-3.5-turbo token encoder: %s", err.Error()))
}
defaultTokenEncoder = gpt35TokenEncoder
gpt4oTokenEncoder, err := tiktoken.EncodingForModel("gpt-4o")
if err != nil {
logger.FatalLog(fmt.Sprintf("failed to get gpt-4o token encoder: %s", err.Error()))
}
gpt4TokenEncoder, err := tiktoken.EncodingForModel("gpt-4")
if err != nil {
logger.FatalLog(fmt.Sprintf("failed to get gpt-4 token encoder: %s", err.Error()))
}
for _, model := range DefaultOpenaiModelList {
if strings.HasPrefix(model, "gpt-3.5") {
tokenEncoderMap[model] = gpt35TokenEncoder
} else if strings.HasPrefix(model, "gpt-4o") {
tokenEncoderMap[model] = gpt4oTokenEncoder
} else if strings.HasPrefix(model, "gpt-4") {
tokenEncoderMap[model] = gpt4TokenEncoder
} else {
tokenEncoderMap[model] = nil
}
}
logger.SysLog("token encoders initialized.")
}
func getTokenEncoder(model string) *tiktoken.Tiktoken {
tokenEncoder, ok := tokenEncoderMap[model]
if ok && tokenEncoder != nil {
return tokenEncoder
}
if ok {
tokenEncoder, err := tiktoken.EncodingForModel(model)
if err != nil {
//logger.SysError(fmt.Sprintf("[IGNORE] | failed to get token encoder for model %s: %s, using encoder for gpt-3.5-turbo", model, err.Error()))
tokenEncoder = defaultTokenEncoder
}
tokenEncoderMap[model] = tokenEncoder
return tokenEncoder
}
return defaultTokenEncoder
}
func getTokenNum(tokenEncoder *tiktoken.Tiktoken, text string) int {
return len(tokenEncoder.Encode(text, nil, nil))
}
func CountTokenMessages(messages []model.OpenAIChatMessage, model string) int {
tokenEncoder := getTokenEncoder(model)
// Reference:
// https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
// https://github.com/pkoukk/tiktoken-go/issues/6
//
// Every message follows <|start|>{role/name}\n{content}<|end|>\n
var tokensPerMessage int
if model == "gpt-3.5-turbo-0301" {
tokensPerMessage = 4
} else {
tokensPerMessage = 3
}
tokenNum := 0
for _, message := range messages {
tokenNum += tokensPerMessage
switch v := message.Content.(type) {
case string:
tokenNum += getTokenNum(tokenEncoder, v)
case []any:
for _, it := range v {
m := it.(map[string]any)
switch m["type"] {
case "text":
if textValue, ok := m["text"]; ok {
if textString, ok := textValue.(string); ok {
tokenNum += getTokenNum(tokenEncoder, textString)
}
}
case "image_url":
imageUrl, ok := m["image_url"].(map[string]any)
if ok {
url := imageUrl["url"].(string)
detail := ""
if imageUrl["detail"] != nil {
detail = imageUrl["detail"].(string)
}
imageTokens, err := countImageTokens(url, detail, model)
if err != nil {
logger.SysError("error counting image tokens: " + err.Error())
} else {
tokenNum += imageTokens
}
}
}
}
}
tokenNum += getTokenNum(tokenEncoder, message.Role)
}
tokenNum += 3 // Every reply is primed with <|start|>assistant<|message|>
return tokenNum
}
const (
lowDetailCost = 85
highDetailCostPerTile = 170
additionalCost = 85
// gpt-4o-mini cost higher than other model
gpt4oMiniLowDetailCost = 2833
gpt4oMiniHighDetailCost = 5667
gpt4oMiniAdditionalCost = 2833
)
// https://platform.openai.com/docs/guides/vision/calculating-costs
// https://github.com/openai/openai-cookbook/blob/05e3f9be4c7a2ae7ecf029a7c32065b024730ebe/examples/How_to_count_tokens_with_tiktoken.ipynb
func countImageTokens(url string, detail string, model string) (_ int, err error) {
// Reference: https://platform.openai.com/docs/guides/vision/low-or-high-fidelity-image-understanding
// detail == "auto" is undocumented on how it works, it just said the model will use the auto setting which will look at the image input size and decide if it should use the low or high setting.
// According to the official guide, "low" disable the high-res model,
// and only receive low-res 512px x 512px version of the image, indicating
// that image is treated as low-res when size is smaller than 512px x 512px,
// then we can assume that image size larger than 512px x 512px is treated
// as high-res. Then we have the following logic:
// if detail == "" || detail == "auto" {
// width, height, err = image.GetImageSize(url)
// if err != nil {
// return 0, err
// }
// fetchSize = false
// // not sure if this is correct
// if width > 512 || height > 512 {
// detail = "high"
// } else {
// detail = "low"
// }
// }
// However, in my test, it seems to be always the same as "high".
// The following image, which is 125x50, is still treated as high-res, taken
// 255 tokens in the response of non-stream chat completion api.
// https://upload.wikimedia.org/wikipedia/commons/1/10/18_Infantry_Division_Messina.jpg
if detail == "" || detail == "auto" {
// assume by test, not sure if this is correct
detail = "low"
}
switch detail {
case "low":
if strings.HasPrefix(model, "gpt-4o-mini") {
return gpt4oMiniLowDetailCost, nil
}
return lowDetailCost, nil
default:
return 0, errors.New("invalid detail option")
}
}
func CountTokenInput(input any, model string) int {
switch v := input.(type) {
case string:
return CountTokenText(v, model)
case []string:
text := ""
for _, s := range v {
text += s
}
return CountTokenText(text, model)
}
return 0
}
func CountTokenText(text string, model string) int {
tokenEncoder := getTokenEncoder(model)
return getTokenNum(tokenEncoder, text)
}
func CountToken(text string) int {
return CountTokenInput(text, "gpt-3.5-turbo")
}