Skip to content
This repository was archived by the owner on Mar 6, 2021. It is now read-only.

Commit 25a7eae

Browse files
committed
cosmetic and comment changes
1 parent 71c4376 commit 25a7eae

File tree

1 file changed

+15
-10
lines changed

1 file changed

+15
-10
lines changed

elm.py

+15-10
Original file line numberDiff line numberDiff line change
@@ -245,7 +245,7 @@ class GenELMClassifier(BaseELM, ClassifierMixin):
245245
`classes_` : numpy array of shape [n_classes]
246246
Array of class labels
247247
248-
`elm_regressor_` : ELMRegressor instance
248+
`genelm_regressor_` : ELMRegressor instance
249249
Performs actual fit of binarized values
250250
251251
See Also
@@ -344,8 +344,8 @@ class ELMRegressor(BaseEstimator, RegressorMixin):
344344
[1][2]
345345
346346
ELMRegressor is a wrapper for an GenELMRegressor that uses a
347-
RandomLayer and exposes the RandomLayer's parameters in its
348-
own constructor.
347+
RandomLayer and passes the __init__ parameters through
348+
to the hidden layer generated by the fit() method.
349349
350350
Parameters
351351
----------
@@ -418,9 +418,11 @@ def __init__(self, n_hidden=20, alpha=0.5, rbf_width=1.0,
418418
self.rbf_width = rbf_width
419419
self.regressor = regressor
420420

421-
self._genelm_regressor_ = None
421+
self._genelm_regressor = None
422422

423423
def _create_random_layer(self):
424+
"""Pass init params to RandomLayer"""
425+
424426
return RandomLayer(n_hidden=self.n_hidden,
425427
alpha=self.alpha, random_state=self.random_state,
426428
activation_func=self.activation_func,
@@ -449,9 +451,9 @@ def fit(self, X, y):
449451
Returns an instance of self.
450452
"""
451453
rhl = self._create_random_layer()
452-
self.genelm_regressor_ = GenELMRegressor(hidden_layer=rhl,
454+
self._genelm_regressor = GenELMRegressor(hidden_layer=rhl,
453455
regressor=self.regressor)
454-
self.genelm_regressor_.fit(X, y)
456+
self._genelm_regressor.fit(X, y)
455457
return self
456458

457459
def predict(self, X):
@@ -467,10 +469,10 @@ def predict(self, X):
467469
C : numpy array of shape [n_samples, n_outputs]
468470
Predicted values.
469471
"""
470-
if (self.genelm_regressor_ is None):
472+
if (self._genelm_regressor is None):
471473
raise ValueError("SimpleELMRegressor not fitted")
472474

473-
return self.genelm_regressor_.predict(X)
475+
return self._genelm_regressor.predict(X)
474476

475477

476478
class ELMClassifier(ELMRegressor):
@@ -486,8 +488,8 @@ class ELMClassifier(ELMRegressor):
486488
data, then uses the superclass to compute the decision function that
487489
is then unbinarized to yield the prediction.
488490
489-
The RandomLayer used for the input transform are exposed in the
490-
ELMClassifier constructor.
491+
The params for the RandomLayer used in the input transform are
492+
exposed in the ELMClassifier constructor.
491493
492494
Parameters
493495
----------
@@ -609,5 +611,8 @@ def predict(self, X):
609611
return class_predictions
610612

611613
def score(self, X, y):
614+
"""Force use of accuracy score since we don't inherit
615+
from ClassifierMixin"""
616+
612617
from sklearn.metrics import accuracy_score
613618
return accuracy_score(y, self.predict(X))

0 commit comments

Comments
 (0)