|
| 1 | +/* |
| 2 | + * Copyright (C) 2017 MINDORKS NEXTGEN PRIVATE LIMITED |
| 3 | + * |
| 4 | + * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | + * you may not use this file except in compliance with the License. |
| 6 | + * You may obtain a copy of the License at |
| 7 | + * |
| 8 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | + * |
| 10 | + * Unless required by applicable law or agreed to in writing, software |
| 11 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | + * See the License for the specific language governing permissions and |
| 14 | + * limitations under the License. |
| 15 | + */ |
| 16 | + |
| 17 | +package com.mindorks.tensorflowexample; |
| 18 | + |
| 19 | +import android.content.res.AssetManager; |
| 20 | +import android.graphics.Bitmap; |
| 21 | +import android.os.Trace; |
| 22 | +import android.util.Log; |
| 23 | + |
| 24 | +import org.tensorflow.contrib.android.TensorFlowInferenceInterface; |
| 25 | + |
| 26 | +import java.io.BufferedReader; |
| 27 | +import java.io.IOException; |
| 28 | +import java.io.InputStreamReader; |
| 29 | +import java.util.ArrayList; |
| 30 | +import java.util.Comparator; |
| 31 | +import java.util.List; |
| 32 | +import java.util.PriorityQueue; |
| 33 | +import java.util.Vector; |
| 34 | + |
| 35 | +/** |
| 36 | + * Created by amitshekhar on 06/03/17. |
| 37 | + */ |
| 38 | + |
| 39 | +/** |
| 40 | + * A classifier specialized to label images using TensorFlow. |
| 41 | + */ |
| 42 | +public class TensorFlowImageClassifier implements Classifier { |
| 43 | + |
| 44 | + private static final String TAG = "TensorFlowImageClassifier"; |
| 45 | + |
| 46 | + // Only return this many results with at least this confidence. |
| 47 | + private static final int MAX_RESULTS = 3; |
| 48 | + private static final float THRESHOLD = 0.1f; |
| 49 | + |
| 50 | + // Config values. |
| 51 | + private String inputName; |
| 52 | + private String outputName; |
| 53 | + private int inputSize; |
| 54 | + private int imageMean; |
| 55 | + private float imageStd; |
| 56 | + |
| 57 | + // Pre-allocated buffers. |
| 58 | + private Vector<String> labels = new Vector<String>(); |
| 59 | + private int[] intValues; |
| 60 | + private float[] floatValues; |
| 61 | + private float[] outputs; |
| 62 | + private String[] outputNames; |
| 63 | + |
| 64 | + private TensorFlowInferenceInterface inferenceInterface; |
| 65 | + |
| 66 | + private TensorFlowImageClassifier() { |
| 67 | + } |
| 68 | + |
| 69 | + /** |
| 70 | + * Initializes a native TensorFlow session for classifying images. |
| 71 | + * |
| 72 | + * @param assetManager The asset manager to be used to load assets. |
| 73 | + * @param modelFilename The filepath of the model GraphDef protocol buffer. |
| 74 | + * @param labelFilename The filepath of label file for classes. |
| 75 | + * @param inputSize The input size. A square image of inputSize x inputSize is assumed. |
| 76 | + * @param imageMean The assumed mean of the image values. |
| 77 | + * @param imageStd The assumed std of the image values. |
| 78 | + * @param inputName The label of the image input node. |
| 79 | + * @param outputName The label of the output node. |
| 80 | + * @throws IOException |
| 81 | + */ |
| 82 | + public static Classifier create( |
| 83 | + AssetManager assetManager, |
| 84 | + String modelFilename, |
| 85 | + String labelFilename, |
| 86 | + int inputSize, |
| 87 | + int imageMean, |
| 88 | + float imageStd, |
| 89 | + String inputName, |
| 90 | + String outputName) |
| 91 | + throws IOException { |
| 92 | + TensorFlowImageClassifier c = new TensorFlowImageClassifier(); |
| 93 | + c.inputName = inputName; |
| 94 | + c.outputName = outputName; |
| 95 | + |
| 96 | + // Read the label names into memory. |
| 97 | + // TODO(andrewharp): make this handle non-assets. |
| 98 | + String actualFilename = labelFilename.split("file:///android_asset/")[1]; |
| 99 | + Log.i(TAG, "Reading labels from: " + actualFilename); |
| 100 | + BufferedReader br = null; |
| 101 | + br = new BufferedReader(new InputStreamReader(assetManager.open(actualFilename))); |
| 102 | + String line; |
| 103 | + while ((line = br.readLine()) != null) { |
| 104 | + c.labels.add(line); |
| 105 | + } |
| 106 | + br.close(); |
| 107 | + |
| 108 | + c.inferenceInterface = new TensorFlowInferenceInterface(); |
| 109 | + if (c.inferenceInterface.initializeTensorFlow(assetManager, modelFilename) != 0) { |
| 110 | + throw new RuntimeException("TF initialization failed"); |
| 111 | + } |
| 112 | + // The shape of the output is [N, NUM_CLASSES], where N is the batch size. |
| 113 | + int numClasses = |
| 114 | + (int) c.inferenceInterface.graph().operation(outputName).output(0).shape().size(1); |
| 115 | + Log.i(TAG, "Read " + c.labels.size() + " labels, output layer size is " + numClasses); |
| 116 | + |
| 117 | + // Ideally, inputSize could have been retrieved from the shape of the input operation. Alas, |
| 118 | + // the placeholder node for input in the graphdef typically used does not specify a shape, so it |
| 119 | + // must be passed in as a parameter. |
| 120 | + c.inputSize = inputSize; |
| 121 | + c.imageMean = imageMean; |
| 122 | + c.imageStd = imageStd; |
| 123 | + |
| 124 | + // Pre-allocate buffers. |
| 125 | + c.outputNames = new String[]{outputName}; |
| 126 | + c.intValues = new int[inputSize * inputSize]; |
| 127 | + c.floatValues = new float[inputSize * inputSize * 3]; |
| 128 | + c.outputs = new float[numClasses]; |
| 129 | + |
| 130 | + return c; |
| 131 | + } |
| 132 | + |
| 133 | + @Override |
| 134 | + public List<Recognition> recognizeImage(final Bitmap bitmap) { |
| 135 | + // Log this method so that it can be analyzed with systrace. |
| 136 | + Trace.beginSection("recognizeImage"); |
| 137 | + |
| 138 | + Trace.beginSection("preprocessBitmap"); |
| 139 | + // Preprocess the image data from 0-255 int to normalized float based |
| 140 | + // on the provided parameters. |
| 141 | + bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0, bitmap.getWidth(), bitmap.getHeight()); |
| 142 | + for (int i = 0; i < intValues.length; ++i) { |
| 143 | + final int val = intValues[i]; |
| 144 | + floatValues[i * 3 + 0] = (((val >> 16) & 0xFF) - imageMean) / imageStd; |
| 145 | + floatValues[i * 3 + 1] = (((val >> 8) & 0xFF) - imageMean) / imageStd; |
| 146 | + floatValues[i * 3 + 2] = ((val & 0xFF) - imageMean) / imageStd; |
| 147 | + } |
| 148 | + Trace.endSection(); |
| 149 | + |
| 150 | + // Copy the input data into TensorFlow. |
| 151 | + Trace.beginSection("fillNodeFloat"); |
| 152 | + inferenceInterface.fillNodeFloat( |
| 153 | + inputName, new int[]{1, inputSize, inputSize, 3}, floatValues); |
| 154 | + Trace.endSection(); |
| 155 | + |
| 156 | + // Run the inference call. |
| 157 | + Trace.beginSection("runInference"); |
| 158 | + inferenceInterface.runInference(outputNames); |
| 159 | + Trace.endSection(); |
| 160 | + |
| 161 | + // Copy the output Tensor back into the output array. |
| 162 | + Trace.beginSection("readNodeFloat"); |
| 163 | + inferenceInterface.readNodeFloat(outputName, outputs); |
| 164 | + Trace.endSection(); |
| 165 | + |
| 166 | + // Find the best classifications. |
| 167 | + PriorityQueue<Recognition> pq = |
| 168 | + new PriorityQueue<Recognition>( |
| 169 | + 3, |
| 170 | + new Comparator<Recognition>() { |
| 171 | + @Override |
| 172 | + public int compare(Recognition lhs, Recognition rhs) { |
| 173 | + // Intentionally reversed to put high confidence at the head of the queue. |
| 174 | + return Float.compare(rhs.getConfidence(), lhs.getConfidence()); |
| 175 | + } |
| 176 | + }); |
| 177 | + for (int i = 0; i < outputs.length; ++i) { |
| 178 | + if (outputs[i] > THRESHOLD) { |
| 179 | + pq.add( |
| 180 | + new Recognition( |
| 181 | + "" + i, labels.size() > i ? labels.get(i) : "unknown", outputs[i], null)); |
| 182 | + } |
| 183 | + } |
| 184 | + final ArrayList<Recognition> recognitions = new ArrayList<Recognition>(); |
| 185 | + int recognitionsSize = Math.min(pq.size(), MAX_RESULTS); |
| 186 | + for (int i = 0; i < recognitionsSize; ++i) { |
| 187 | + recognitions.add(pq.poll()); |
| 188 | + } |
| 189 | + Trace.endSection(); // "recognizeImage" |
| 190 | + return recognitions; |
| 191 | + } |
| 192 | + |
| 193 | + @Override |
| 194 | + public void enableStatLogging(boolean debug) { |
| 195 | + inferenceInterface.enableStatLogging(debug); |
| 196 | + } |
| 197 | + |
| 198 | + @Override |
| 199 | + public String getStatString() { |
| 200 | + return inferenceInterface.getStatString(); |
| 201 | + } |
| 202 | + |
| 203 | + @Override |
| 204 | + public void close() { |
| 205 | + inferenceInterface.close(); |
| 206 | + } |
| 207 | +} |
0 commit comments