forked from espressif/arduino-esp32
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEsp.cpp
509 lines (449 loc) · 13.6 KB
/
Esp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
/*
Esp.cpp - ESP31B-specific APIs
Copyright (c) 2015 Ivan Grokhotkov. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "Arduino.h"
#include "Esp.h"
#include "esp_sleep.h"
#include "spi_flash_mmap.h"
#include <memory>
#include <soc/soc.h>
#include <esp_partition.h>
extern "C" {
#include "esp_ota_ops.h"
#include "esp_image_format.h"
}
#include <MD5Builder.h>
#include "soc/spi_reg.h"
#include "esp_system.h"
#include "esp_chip_info.h"
#include "esp_mac.h"
#include "esp_flash.h"
#ifdef ESP_IDF_VERSION_MAJOR // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "esp32/rom/spi_flash.h"
#include "soc/efuse_reg.h"
#define ESP_FLASH_IMAGE_BASE 0x1000 // Flash offset containing flash size and spi mode
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/spi_flash.h"
#include "soc/efuse_reg.h"
#define ESP_FLASH_IMAGE_BASE 0x1000
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/spi_flash.h"
#include "soc/efuse_reg.h"
#define ESP_FLASH_IMAGE_BASE 0x0000 // Esp32s3 is located at 0x0000
#elif CONFIG_IDF_TARGET_ESP32C2
#include "esp32c2/rom/spi_flash.h"
#define ESP_FLASH_IMAGE_BASE 0x0000 // Esp32c2 is located at 0x0000
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/spi_flash.h"
#define ESP_FLASH_IMAGE_BASE 0x0000 // Esp32c3 is located at 0x0000
#elif CONFIG_IDF_TARGET_ESP32C6
#include "esp32c6/rom/spi_flash.h"
#define ESP_FLASH_IMAGE_BASE 0x0000 // Esp32c6 is located at 0x0000
#elif CONFIG_IDF_TARGET_ESP32H2
#include "esp32h2/rom/spi_flash.h"
#define ESP_FLASH_IMAGE_BASE 0x0000 // Esp32h2 is located at 0x0000
#elif CONFIG_IDF_TARGET_ESP32P4
#include "esp32p4/rom/spi_flash.h"
#define ESP_FLASH_IMAGE_BASE 0x2000 // Esp32p4 is located at 0x2000
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "rom/spi_flash.h"
#define ESP_FLASH_IMAGE_BASE 0x1000
#endif
// REG_SPI_BASE is not defined for S3/C3 ??
#if CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3
#ifdef REG_SPI_BASE
#undef REG_SPI_BASE
#endif // REG_SPI_BASE
#define REG_SPI_BASE(i) (DR_REG_SPI1_BASE + (((i) > 1) ? (((i) * 0x1000) + 0x20000) : (((~(i)) & 1) * 0x1000)))
#endif // TARGET
/**
* User-defined Literals
* usage:
*
* uint32_t = test = 10_MHz; // --> 10000000
*/
unsigned long long operator"" _kHz(unsigned long long x) {
return x * 1000;
}
unsigned long long operator"" _MHz(unsigned long long x) {
return x * 1000 * 1000;
}
unsigned long long operator"" _GHz(unsigned long long x) {
return x * 1000 * 1000 * 1000;
}
unsigned long long operator"" _kBit(unsigned long long x) {
return x * 1024;
}
unsigned long long operator"" _MBit(unsigned long long x) {
return x * 1024 * 1024;
}
unsigned long long operator"" _GBit(unsigned long long x) {
return x * 1024 * 1024 * 1024;
}
unsigned long long operator"" _kB(unsigned long long x) {
return x * 1024;
}
unsigned long long operator"" _MB(unsigned long long x) {
return x * 1024 * 1024;
}
unsigned long long operator"" _GB(unsigned long long x) {
return x * 1024 * 1024 * 1024;
}
EspClass ESP;
void EspClass::deepSleep(uint64_t time_us) {
esp_deep_sleep(time_us);
}
void EspClass::restart(void) {
esp_restart();
}
uint32_t EspClass::getHeapSize(void) {
return heap_caps_get_total_size(MALLOC_CAP_INTERNAL);
}
uint32_t EspClass::getFreeHeap(void) {
return heap_caps_get_free_size(MALLOC_CAP_INTERNAL);
}
uint32_t EspClass::getMinFreeHeap(void) {
return heap_caps_get_minimum_free_size(MALLOC_CAP_INTERNAL);
}
uint32_t EspClass::getMaxAllocHeap(void) {
return heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL);
}
uint32_t EspClass::getPsramSize(void) {
if (psramFound()) {
return heap_caps_get_total_size(MALLOC_CAP_SPIRAM);
}
return 0;
}
uint32_t EspClass::getFreePsram(void) {
if (psramFound()) {
return heap_caps_get_free_size(MALLOC_CAP_SPIRAM);
}
return 0;
}
uint32_t EspClass::getMinFreePsram(void) {
if (psramFound()) {
return heap_caps_get_minimum_free_size(MALLOC_CAP_SPIRAM);
}
return 0;
}
uint32_t EspClass::getMaxAllocPsram(void) {
if (psramFound()) {
return heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM);
}
return 0;
}
static uint32_t sketchSize(sketchSize_t response) {
esp_image_metadata_t data;
const esp_partition_t *running = esp_ota_get_running_partition();
if (!running) {
return 0;
}
const esp_partition_pos_t running_pos = {
.offset = running->address,
.size = running->size,
};
data.start_addr = running_pos.offset;
esp_image_verify(ESP_IMAGE_VERIFY, &running_pos, &data);
if (response) {
return running_pos.size - data.image_len;
} else {
return data.image_len;
}
}
uint32_t EspClass::getSketchSize() {
return sketchSize(SKETCH_SIZE_TOTAL);
}
String EspClass::getSketchMD5() {
static String result;
if (result.length()) {
return result;
}
uint32_t lengthLeft = getSketchSize();
const esp_partition_t *running = esp_ota_get_running_partition();
if (!running) {
log_e("Partition could not be found");
return String();
}
const size_t bufSize = SPI_FLASH_SEC_SIZE;
uint8_t *pb = (uint8_t *)malloc(bufSize);
if (!pb) {
log_e("Not enough memory to allocate buffer");
return String();
}
uint32_t offset = 0;
MD5Builder md5;
md5.begin();
while (lengthLeft > 0) {
size_t readBytes = (lengthLeft < bufSize) ? lengthLeft : bufSize;
if (!ESP.flashRead(running->address + offset, (uint32_t *)pb, (readBytes + 3) & ~3)) {
free(pb);
log_e("Could not read buffer from flash");
return String();
}
md5.add(pb, readBytes);
lengthLeft -= readBytes;
offset += readBytes;
#if CONFIG_FREERTOS_UNICORE
delay(1); // Fix solo WDT
#endif
}
free(pb);
md5.calculate();
result = md5.toString();
return result;
}
uint32_t EspClass::getFreeSketchSpace() {
const esp_partition_t *_partition = esp_ota_get_next_update_partition(NULL);
if (!_partition) {
return 0;
}
return _partition->size;
}
uint16_t EspClass::getChipRevision(void) {
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
return chip_info.revision;
}
const char *EspClass::getChipModel(void) {
#if CONFIG_IDF_TARGET_ESP32
uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_PACKAGE);
uint32_t pkg_ver = chip_ver & 0x7;
switch (pkg_ver) {
case EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6:
if ((getChipRevision() / 100) == 3) {
return "ESP32-D0WDQ6-V3";
} else {
return "ESP32-D0WDQ6";
}
case EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5:
if ((getChipRevision() / 100) == 3) {
return "ESP32-D0WD-V3";
} else {
return "ESP32-D0WD";
}
case EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5: return "ESP32-D2WD";
case EFUSE_RD_CHIP_VER_PKG_ESP32U4WDH: return "ESP32-U4WDH";
case EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4: return "ESP32-PICO-D4";
case EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302: return "ESP32-PICO-V3-02";
case EFUSE_RD_CHIP_VER_PKG_ESP32D0WDR2V3: return "ESP32-D0WDR2-V3";
default: return "Unknown";
}
#elif CONFIG_IDF_TARGET_ESP32S2
uint32_t pkg_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PKG_VERSION);
switch (pkg_ver) {
case 0: return "ESP32-S2";
case 1: return "ESP32-S2FH16";
case 2: return "ESP32-S2FH32";
default: return "ESP32-S2 (Unknown)";
}
#else
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
switch (chip_info.model) {
case CHIP_ESP32S3: return "ESP32-S3";
case CHIP_ESP32C3: return "ESP32-C3";
case CHIP_ESP32C2: return "ESP32-C2";
case CHIP_ESP32C6: return "ESP32-C6";
case CHIP_ESP32H2: return "ESP32-H2";
case CHIP_ESP32P4: return "ESP32-P4";
default: return "UNKNOWN";
}
#endif
}
uint8_t EspClass::getChipCores(void) {
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
return chip_info.cores;
}
const char *EspClass::getSdkVersion(void) {
return esp_get_idf_version();
}
const char *EspClass::getCoreVersion(void) {
return ESP_ARDUINO_VERSION_STR;
}
uint32_t ESP_getFlashChipId(void) {
uint32_t id = g_rom_flashchip.device_id;
id = ((id & 0xff) << 16) | ((id >> 16) & 0xff) | (id & 0xff00);
return id;
}
uint32_t EspClass::getFlashChipSize(void) {
uint32_t id = (ESP_getFlashChipId() >> 16) & 0xFF;
return 2 << (id - 1);
}
uint32_t EspClass::getFlashChipSpeed(void) {
esp_image_header_t fhdr;
if (esp_flash_read(esp_flash_default_chip, (void *)&fhdr, ESP_FLASH_IMAGE_BASE, sizeof(esp_image_header_t)) && fhdr.magic != ESP_IMAGE_HEADER_MAGIC) {
return 0;
}
return magicFlashChipSpeed(fhdr.spi_speed);
}
// FIXME for P4
#if !defined(CONFIG_IDF_TARGET_ESP32P4)
FlashMode_t EspClass::getFlashChipMode(void) {
#if CONFIG_IDF_TARGET_ESP32S2
uint32_t spi_ctrl = REG_READ(PERIPHS_SPI_FLASH_CTRL);
#else
#if CONFIG_IDF_TARGET_ESP32H2 || CONFIG_IDF_TARGET_ESP32C2 || CONFIG_IDF_TARGET_ESP32C6
uint32_t spi_ctrl = REG_READ(DR_REG_SPI0_BASE + 0x8);
#else
uint32_t spi_ctrl = REG_READ(SPI_CTRL_REG(0));
#endif
#endif
/* Not all of the following constants are already defined in older versions of spi_reg.h, so do it manually for now*/
if (spi_ctrl & BIT(24)) { //SPI_FREAD_QIO
return (FM_QIO);
} else if (spi_ctrl & BIT(20)) { //SPI_FREAD_QUAD
return (FM_QOUT);
} else if (spi_ctrl & BIT(23)) { //SPI_FREAD_DIO
return (FM_DIO);
} else if (spi_ctrl & BIT(14)) { // SPI_FREAD_DUAL
return (FM_DOUT);
} else if (spi_ctrl & BIT(13)) { //SPI_FASTRD_MODE
return (FM_FAST_READ);
} else {
return (FM_SLOW_READ);
}
return (FM_DOUT);
}
#endif // if !defined(CONFIG_IDF_TARGET_ESP32P4)
uint32_t EspClass::magicFlashChipSize(uint8_t byte) {
/*
FLASH_SIZES = {
"1MB": 0x00,
"2MB": 0x10,
"4MB": 0x20,
"8MB": 0x30,
"16MB": 0x40,
"32MB": 0x50,
"64MB": 0x60,
"128MB": 0x70,
}
*/
switch (byte & 0x0F) {
case 0x0: return (1_MB); // 8 MBit (1MB)
case 0x1: return (2_MB); // 16 MBit (2MB)
case 0x2: return (4_MB); // 32 MBit (4MB)
case 0x3: return (8_MB); // 64 MBit (8MB)
case 0x4: return (16_MB); // 128 MBit (16MB)
case 0x5: return (32_MB); // 256 MBit (32MB)
case 0x6: return (64_MB); // 512 MBit (64MB)
case 0x7: return (128_MB); // 1 GBit (128MB)
default: // fail?
return 0;
}
}
uint32_t EspClass::magicFlashChipSpeed(uint8_t byte) {
#if CONFIG_IDF_TARGET_ESP32C2
/*
FLASH_FREQUENCY = {
"60m": 0xF,
"30m": 0x0,
"20m": 0x1,
"15m": 0x2,
}
*/
switch (byte & 0x0F) {
case 0xF: return (60_MHz);
case 0x0: return (30_MHz);
case 0x1: return (20_MHz);
case 0x2: return (15_MHz);
default: // fail?
return 0;
}
#elif CONFIG_IDF_TARGET_ESP32C6
/*
FLASH_FREQUENCY = {
"80m": 0x0, # workaround for wrong mspi HS div value in ROM
"40m": 0x0,
"20m": 0x2,
}
*/
switch (byte & 0x0F) {
case 0x0: return (80_MHz);
case 0x2: return (20_MHz);
default: // fail?
return 0;
}
#elif CONFIG_IDF_TARGET_ESP32H2
/*
FLASH_FREQUENCY = {
"48m": 0xF,
"24m": 0x0,
"16m": 0x1,
"12m": 0x2,
}
*/
switch (byte & 0x0F) {
case 0xF: return (48_MHz);
case 0x0: return (24_MHz);
case 0x1: return (16_MHz);
case 0x2: return (12_MHz);
default: // fail?
return 0;
}
#else
/*
FLASH_FREQUENCY = {
"80m": 0xF,
"40m": 0x0,
"26m": 0x1,
"20m": 0x2,
}
*/
switch (byte & 0x0F) {
case 0xF: return (80_MHz);
case 0x0: return (40_MHz);
case 0x1: return (26_MHz);
case 0x2: return (20_MHz);
default: // fail?
return 0;
}
#endif
}
FlashMode_t EspClass::magicFlashChipMode(uint8_t byte) {
FlashMode_t mode = (FlashMode_t)byte;
if (mode > FM_SLOW_READ) {
mode = FM_UNKNOWN;
}
return mode;
}
bool EspClass::flashEraseSector(uint32_t sector) {
return esp_flash_erase_region(esp_flash_default_chip, sector * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE) == ESP_OK;
}
// Warning: These functions do not work with encrypted flash
bool EspClass::flashWrite(uint32_t offset, uint32_t *data, size_t size) {
return esp_flash_write(esp_flash_default_chip, (const void *)data, offset, size) == ESP_OK;
}
bool EspClass::flashRead(uint32_t offset, uint32_t *data, size_t size) {
return esp_flash_read(esp_flash_default_chip, (void *)data, offset, size) == ESP_OK;
}
bool EspClass::partitionEraseRange(const esp_partition_t *partition, uint32_t offset, size_t size) {
return esp_partition_erase_range(partition, offset, size) == ESP_OK;
}
bool EspClass::partitionWrite(const esp_partition_t *partition, uint32_t offset, uint32_t *data, size_t size) {
return esp_partition_write(partition, offset, data, size) == ESP_OK;
}
bool EspClass::partitionRead(const esp_partition_t *partition, uint32_t offset, uint32_t *data, size_t size) {
return esp_partition_read(partition, offset, data, size) == ESP_OK;
}
uint64_t EspClass::getEfuseMac(void) {
uint64_t _chipmacid = 0LL;
esp_efuse_mac_get_default((uint8_t *)(&_chipmacid));
return _chipmacid;
}