@@ -1085,28 +1085,28 @@ RankedTensorType PadTensorOp::inferResultType(RankedTensorType sourceType,
10851085void PadTensorOp::build (OpBuilder &b, OperationState &result, Value source,
10861086 ArrayRef<int64_t > staticLow,
10871087 ArrayRef<int64_t > staticHigh, ValueRange low,
1088- ValueRange high, bool packing ,
1088+ ValueRange high, bool nofold ,
10891089 ArrayRef<NamedAttribute> attrs) {
10901090 auto sourceType = source.getType ().cast <RankedTensorType>();
10911091 auto resultType = inferResultType (sourceType, staticLow, staticHigh);
10921092 build (b, result, resultType, source, low, high, b.getI64ArrayAttr (staticLow),
1093- b.getI64ArrayAttr (staticHigh), packing ? b.getUnitAttr () : UnitAttr ());
1093+ b.getI64ArrayAttr (staticHigh), nofold ? b.getUnitAttr () : UnitAttr ());
10941094 result.addAttributes (attrs);
10951095}
10961096
10971097void PadTensorOp::build (OpBuilder &b, OperationState &result, Value source,
1098- ValueRange low, ValueRange high, bool packing ,
1098+ ValueRange low, ValueRange high, bool nofold ,
10991099 ArrayRef<NamedAttribute> attrs) {
11001100 auto sourceType = source.getType ().cast <RankedTensorType>();
11011101 unsigned rank = sourceType.getRank ();
11021102 SmallVector<int64_t , 4 > staticVector (rank, ShapedType::kDynamicSize );
1103- build (b, result, source, staticVector, staticVector, low, high, packing ,
1103+ build (b, result, source, staticVector, staticVector, low, high, nofold ,
11041104 attrs);
11051105}
11061106
11071107void PadTensorOp::build (OpBuilder &b, OperationState &result, Type resultType,
11081108 Value source, ArrayRef<OpFoldResult> low,
1109- ArrayRef<OpFoldResult> high, bool packing ,
1109+ ArrayRef<OpFoldResult> high, bool nofold ,
11101110 ArrayRef<NamedAttribute> attrs) {
11111111 assert (resultType.isa <RankedTensorType>());
11121112 auto sourceType = source.getType ().cast <RankedTensorType>();
@@ -1129,17 +1129,17 @@ void PadTensorOp::build(OpBuilder &b, OperationState &result, Type resultType,
11291129 }
11301130 build (b, result, resultType, source, dynamicLow, dynamicHigh,
11311131 b.getI64ArrayAttr (staticLow), b.getI64ArrayAttr (staticHigh),
1132- packing ? b.getUnitAttr () : UnitAttr ());
1132+ nofold ? b.getUnitAttr () : UnitAttr ());
11331133 result.addAttributes (attrs);
11341134}
11351135
11361136PadTensorOp PadTensorOp::createPadScalarOp (Type type, Value source, Value pad,
11371137 ArrayRef<OpFoldResult> low,
11381138 ArrayRef<OpFoldResult> high,
1139- bool packing , Location loc,
1139+ bool nofold , Location loc,
11401140 OpBuilder &builder) {
1141- auto padTensorOp = builder. create <linalg::PadTensorOp>(loc, type, source, low,
1142- high, packing );
1141+ auto padTensorOp =
1142+ builder. create <linalg::PadTensorOp>(loc, type, source, low, high, nofold );
11431143 int rank = padTensorOp.getResultType ().getRank ();
11441144 SmallVector<Type, 4 > blockArgTypes;
11451145 blockArgTypes.assign (rank, builder.getIndexType ());
@@ -1153,7 +1153,7 @@ PadTensorOp PadTensorOp::createPadScalarOp(Type type, Value source, Value pad,
11531153}
11541154
11551155PadTensorOp PadTensorOp::createPadHighOp (Type type, Value source, Value pad,
1156- bool packing , Location loc,
1156+ bool nofold , Location loc,
11571157 OpBuilder &builder) {
11581158 SmallVector<OpFoldResult, 4 > low, high;
11591159 auto rankedTensorType = type.cast <RankedTensorType>();
@@ -1167,7 +1167,7 @@ PadTensorOp PadTensorOp::createPadHighOp(Type type, Value source, Value pad,
11671167 high.push_back (highValue);
11681168 low.push_back (builder.createOrFold <ConstantIndexOp>(loc, 0 ));
11691169 }
1170- return PadTensorOp::createPadScalarOp (type, source, pad, low, high, packing ,
1170+ return PadTensorOp::createPadScalarOp (type, source, pad, low, high, nofold ,
11711171 loc, builder);
11721172}
11731173
@@ -1440,16 +1440,16 @@ Operation *PadTensorOp::getTiledImplementation(OpBuilder &b, ValueRange dest,
14401440}
14411441
14421442namespace {
1443- // Folds linalg.pad_tensor when padding is static zeros and packing is not
1444- // requested .
1443+ // Folds linalg.pad_tensor when padding is static zeros and the attribute
1444+ // doesn't request otherwise .
14451445struct FoldStaticZeroPadding : public OpRewritePattern <PadTensorOp> {
14461446 using OpRewritePattern<PadTensorOp>::OpRewritePattern;
14471447
14481448 LogicalResult matchAndRewrite (PadTensorOp padTensorOp,
14491449 PatternRewriter &rewriter) const override {
14501450 if (!padTensorOp.hasZeroLowPad () || !padTensorOp.hasZeroHighPad ())
14511451 return failure ();
1452- if (padTensorOp.packing ())
1452+ if (padTensorOp.nofold ())
14531453 return failure ();
14541454 rewriter.replaceOpWithNewOp <tensor::CastOp>(
14551455 padTensorOp, padTensorOp.result ().getType (), padTensorOp.source ());
@@ -1481,7 +1481,7 @@ struct FoldSourceTensorCast : public OpRewritePattern<PadTensorOp> {
14811481 auto newOp = rewriter.create <PadTensorOp>(
14821482 padTensorOp->getLoc (), newResultType, padTensorOp.source (),
14831483 padTensorOp.low (), padTensorOp.high (), padTensorOp.static_low (),
1484- padTensorOp.static_high (), padTensorOp.packing ());
1484+ padTensorOp.static_high (), padTensorOp.nofold ());
14851485 BlockAndValueMapping mapper;
14861486 padTensorOp.getRegion ().cloneInto (&newOp.getRegion (), mapper);
14871487
@@ -1513,7 +1513,7 @@ struct FoldTargetTensorCast : public OpRewritePattern<PadTensorOp> {
15131513 padTensorOp.getLoc (), tensorCastOp.dest ().getType (),
15141514 padTensorOp.source (), padTensorOp.low (), padTensorOp.high (),
15151515 padTensorOp.static_low (), padTensorOp.static_high (),
1516- padTensorOp.packing ());
1516+ padTensorOp.nofold ());
15171517 replacementOp.region ().takeBody (padTensorOp.region ());
15181518
15191519 rewriter.replaceOp (padTensorOp, replacementOp.result ());
@@ -1555,7 +1555,7 @@ Value PadTensorOp::getConstantPaddingValue() {
15551555
15561556OpFoldResult PadTensorOp::fold (ArrayRef<Attribute>) {
15571557 if (getResultType ().hasStaticShape () && getResultType () == getSourceType () &&
1558- !packing ())
1558+ !nofold ())
15591559 return source ();
15601560 return {};
15611561}
0 commit comments