forked from espressif/arduino-esp32
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathesp32-hal-timer.c
308 lines (272 loc) · 11.1 KB
/
esp32-hal-timer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-timer.h"
#include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h"
#include "rom/ets_sys.h"
#include "soc/timer_group_struct.h"
#include "soc/dport_reg.h"
#include "esp_attr.h"
#include "esp_intr.h"
#define HWTIMER_LOCK() portENTER_CRITICAL(timer->lock)
#define HWTIMER_UNLOCK() portEXIT_CRITICAL(timer->lock)
typedef struct {
union {
struct {
uint32_t reserved0: 10;
uint32_t alarm_en: 1; /*When set alarm is enabled*/
uint32_t level_int_en: 1; /*When set level type interrupt will be generated during alarm*/
uint32_t edge_int_en: 1; /*When set edge type interrupt will be generated during alarm*/
uint32_t divider: 16; /*Timer clock (T0/1_clk) pre-scale value.*/
uint32_t autoreload: 1; /*When set timer 0/1 auto-reload at alarming is enabled*/
uint32_t increase: 1; /*When set timer 0/1 time-base counter increment. When cleared timer 0 time-base counter decrement.*/
uint32_t enable: 1; /*When set timer 0/1 time-base counter is enabled*/
};
uint32_t val;
} config;
uint32_t cnt_low; /*Register to store timer 0/1 time-base counter current value lower 32 bits.*/
uint32_t cnt_high; /*Register to store timer 0 time-base counter current value higher 32 bits.*/
uint32_t update; /*Write any value will trigger a timer 0 time-base counter value update (timer 0 current value will be stored in registers above)*/
uint32_t alarm_low; /*Timer 0 time-base counter value lower 32 bits that will trigger the alarm*/
uint32_t alarm_high; /*Timer 0 time-base counter value higher 32 bits that will trigger the alarm*/
uint32_t load_low; /*Lower 32 bits of the value that will load into timer 0 time-base counter*/
uint32_t load_high; /*higher 32 bits of the value that will load into timer 0 time-base counter*/
uint32_t reload; /*Write any value will trigger timer 0 time-base counter reload*/
} hw_timer_reg_t;
typedef struct hw_timer_s {
hw_timer_reg_t * dev;
uint8_t num;
uint8_t group;
uint8_t timer;
portMUX_TYPE lock;
} hw_timer_t;
static hw_timer_t hw_timer[4] = {
{(hw_timer_reg_t *)(DR_REG_TIMERGROUP0_BASE),0,0,0,portMUX_INITIALIZER_UNLOCKED},
{(hw_timer_reg_t *)(DR_REG_TIMERGROUP0_BASE + 0x0024),1,0,1,portMUX_INITIALIZER_UNLOCKED},
{(hw_timer_reg_t *)(DR_REG_TIMERGROUP0_BASE + 0x1000),2,1,0,portMUX_INITIALIZER_UNLOCKED},
{(hw_timer_reg_t *)(DR_REG_TIMERGROUP0_BASE + 0x1024),3,1,1,portMUX_INITIALIZER_UNLOCKED}
};
typedef void (*voidFuncPtr)(void);
static voidFuncPtr __timerInterruptHandlers[4] = {0,0,0,0};
void IRAM_ATTR __timerISR(void * arg){
uint32_t s0 = TIMERG0.int_st_timers.val;
uint32_t s1 = TIMERG1.int_st_timers.val;
TIMERG0.int_clr_timers.val = s0;
TIMERG1.int_clr_timers.val = s1;
uint8_t status = (s1 & 3) << 2 | (s0 & 3);
uint8_t i = 4;
//restart the timers that should autoreload
while(i--){
hw_timer_reg_t * dev = hw_timer[i].dev;
if((status & (1 << i)) && dev->config.autoreload){
dev->config.alarm_en = 1;
}
}
i = 4;
//call callbacks
while(i--){
if(__timerInterruptHandlers[i] && (status & (1 << i))){
__timerInterruptHandlers[i]();
}
}
}
uint64_t IRAM_ATTR timerRead(hw_timer_t *timer){
timer->dev->update = 1;
uint64_t h = timer->dev->cnt_high;
uint64_t l = timer->dev->cnt_low;
return (h << 32) | l;
}
uint64_t IRAM_ATTR timerAlarmRead(hw_timer_t *timer){
uint64_t h = timer->dev->alarm_high;
uint64_t l = timer->dev->alarm_low;
return (h << 32) | l;
}
void IRAM_ATTR timerWrite(hw_timer_t *timer, uint64_t val){
timer->dev->load_high = (uint32_t) (val >> 32);
timer->dev->load_low = (uint32_t) (val);
timer->dev->reload = 1;
}
void IRAM_ATTR timerAlarmWrite(hw_timer_t *timer, uint64_t alarm_value, bool autoreload){
timer->dev->alarm_high = (uint32_t) (alarm_value >> 32);
timer->dev->alarm_low = (uint32_t) alarm_value;
timer->dev->config.autoreload = autoreload;
}
void IRAM_ATTR timerSetConfig(hw_timer_t *timer, uint32_t config){
timer->dev->config.val = config;
}
uint32_t IRAM_ATTR timerGetConfig(hw_timer_t *timer){
return timer->dev->config.val;
}
void IRAM_ATTR timerSetCountUp(hw_timer_t *timer, bool countUp){
timer->dev->config.increase = countUp;
}
bool IRAM_ATTR timerGetCountUp(hw_timer_t *timer){
return timer->dev->config.increase;
}
void IRAM_ATTR timerSetAutoReload(hw_timer_t *timer, bool autoreload){
timer->dev->config.autoreload = autoreload;
}
bool IRAM_ATTR timerGetAutoReload(hw_timer_t *timer){
return timer->dev->config.autoreload;
}
void IRAM_ATTR timerSetDivider(hw_timer_t *timer, uint16_t divider){//2 to 65536
if(!divider){
divider = 0xFFFF;
} else if(divider == 1){
divider = 2;
}
int timer_en = timer->dev->config.enable;
timer->dev->config.enable = 0;
timer->dev->config.divider = divider;
timer->dev->config.enable = timer_en;
}
uint16_t IRAM_ATTR timerGetDivider(hw_timer_t *timer){
return timer->dev->config.divider;
}
void IRAM_ATTR timerStart(hw_timer_t *timer){
timer->dev->config.enable = 1;
}
void IRAM_ATTR timerStop(hw_timer_t *timer){
timer->dev->config.enable = 0;
}
void IRAM_ATTR timerRestart(hw_timer_t *timer){
timer->dev->config.enable = 0;
timer->dev->reload = 1;
timer->dev->config.enable = 1;
}
bool IRAM_ATTR timerStarted(hw_timer_t *timer){
return timer->dev->config.enable;
}
void IRAM_ATTR timerAlarmEnable(hw_timer_t *timer){
timer->dev->config.alarm_en = 1;
}
void IRAM_ATTR timerAlarmDisable(hw_timer_t *timer){
timer->dev->config.alarm_en = 0;
}
bool IRAM_ATTR timerAlarmEnabled(hw_timer_t *timer){
return timer->dev->config.alarm_en;
}
static void IRAM_ATTR _on_apb_change(void * arg, apb_change_ev_t ev_type, uint32_t old_apb, uint32_t new_apb){
hw_timer_t * timer = (hw_timer_t *)arg;
if(ev_type == APB_BEFORE_CHANGE){
timer->dev->config.enable = 0;
} else {
old_apb /= 1000000;
new_apb /= 1000000;
timer->dev->config.divider = (new_apb * timer->dev->config.divider) / old_apb;
timer->dev->config.enable = 1;
}
}
hw_timer_t * IRAM_ATTR timerBegin(uint8_t num, uint16_t divider, bool countUp){
if(num > 3){
return NULL;
}
hw_timer_t * timer = &hw_timer[num];
if(timer->group) {
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_TIMERGROUP1_CLK_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_TIMERGROUP1_RST);
TIMERG1.int_ena.val &= ~BIT(timer->timer);
} else {
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_TIMERGROUP_CLK_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_TIMERGROUP_RST);
TIMERG0.int_ena.val &= ~BIT(timer->timer);
}
timer->dev->config.enable = 0;
timerSetDivider(timer, divider);
timerSetCountUp(timer, countUp);
timerSetAutoReload(timer, false);
timerAttachInterrupt(timer, NULL, false);
timerWrite(timer, 0);
timer->dev->config.enable = 1;
addApbChangeCallback(timer, _on_apb_change);
return timer;
}
void IRAM_ATTR timerEnd(hw_timer_t *timer){
timer->dev->config.enable = 0;
timerAttachInterrupt(timer, NULL, false);
removeApbChangeCallback(timer, _on_apb_change);
}
void IRAM_ATTR timerAttachInterrupt(hw_timer_t *timer, void (*fn)(void), bool edge){
static bool initialized = false;
static intr_handle_t intr_handle = NULL;
if(intr_handle){
esp_intr_disable(intr_handle);
}
if(fn == NULL){
timer->dev->config.level_int_en = 0;
timer->dev->config.edge_int_en = 0;
timer->dev->config.alarm_en = 0;
if(timer->num & 2){
TIMERG1.int_ena.val &= ~BIT(timer->timer);
} else {
TIMERG0.int_ena.val &= ~BIT(timer->timer);
}
__timerInterruptHandlers[timer->num] = NULL;
} else {
__timerInterruptHandlers[timer->num] = fn;
timer->dev->config.level_int_en = edge?0:1;//When set, an alarm will generate a level type interrupt.
timer->dev->config.edge_int_en = edge?1:0;//When set, an alarm will generate an edge type interrupt.
int intr_source = 0;
if(!edge){
if(timer->group){
intr_source = ETS_TG1_T0_LEVEL_INTR_SOURCE + timer->timer;
} else {
intr_source = ETS_TG0_T0_LEVEL_INTR_SOURCE + timer->timer;
}
} else {
if(timer->group){
intr_source = ETS_TG1_T0_EDGE_INTR_SOURCE + timer->timer;
} else {
intr_source = ETS_TG0_T0_EDGE_INTR_SOURCE + timer->timer;
}
}
if(!initialized){
initialized = true;
esp_intr_alloc(intr_source, (int)(ESP_INTR_FLAG_IRAM|ESP_INTR_FLAG_LOWMED|ESP_INTR_FLAG_EDGE), __timerISR, NULL, &intr_handle);
} else {
intr_matrix_set(esp_intr_get_cpu(intr_handle), intr_source, esp_intr_get_intno(intr_handle));
}
if(timer->group){
TIMERG1.int_ena.val |= BIT(timer->timer);
} else {
TIMERG0.int_ena.val |= BIT(timer->timer);
}
}
if(intr_handle){
esp_intr_enable(intr_handle);
}
}
void IRAM_ATTR timerDetachInterrupt(hw_timer_t *timer){
timerAttachInterrupt(timer, NULL, false);
}
uint64_t IRAM_ATTR timerReadMicros(hw_timer_t *timer){
uint64_t timer_val = timerRead(timer);
uint16_t div = timerGetDivider(timer);
return timer_val * div / (getApbFrequency() / 1000000);
}
double IRAM_ATTR timerReadSeconds(hw_timer_t *timer){
uint64_t timer_val = timerRead(timer);
uint16_t div = timerGetDivider(timer);
return (double)timer_val * div / getApbFrequency();
}
uint64_t IRAM_ATTR timerAlarmReadMicros(hw_timer_t *timer){
uint64_t timer_val = timerAlarmRead(timer);
uint16_t div = timerGetDivider(timer);
return timer_val * div / (getApbFrequency() / 1000000);
}
double IRAM_ATTR timerAlarmReadSeconds(hw_timer_t *timer){
uint64_t timer_val = timerAlarmRead(timer);
uint16_t div = timerGetDivider(timer);
return (double)timer_val * div / getApbFrequency();
}