forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmod.rs
344 lines (318 loc) · 12.5 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
use rustc_pattern_analysis::constructor::{
Constructor, ConstructorSet, IntRange, MaybeInfiniteInt, RangeEnd, VariantVisibility,
};
use rustc_pattern_analysis::usefulness::{PlaceValidity, UsefulnessReport};
use rustc_pattern_analysis::{Captures, MatchArm, PatCx, PrivateUninhabitedField};
/// Sets up `tracing` for easier debugging. Tries to look like the `rustc` setup.
pub fn init_tracing() {
use tracing_subscriber::Layer;
use tracing_subscriber::layer::SubscriberExt;
use tracing_subscriber::util::SubscriberInitExt;
let _ = tracing_tree::HierarchicalLayer::default()
.with_writer(std::io::stderr)
.with_ansi(true)
.with_targets(true)
.with_indent_amount(2)
.with_subscriber(
tracing_subscriber::Registry::default()
.with(tracing_subscriber::EnvFilter::from_default_env()),
)
.try_init();
}
/// A simple set of types.
#[allow(dead_code)]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum Ty {
/// Booleans
Bool,
/// 8-bit unsigned integers
U8,
/// Tuples.
Tuple(&'static [Ty]),
/// Enum with one variant of each given type.
Enum(&'static [Ty]),
/// A struct with `arity` fields of type `ty`.
BigStruct { arity: usize, ty: &'static Ty },
/// A enum with `arity` variants of type `ty`.
BigEnum { arity: usize, ty: &'static Ty },
}
/// The important logic.
impl Ty {
pub fn sub_tys(&self, ctor: &Constructor<Cx>) -> Vec<Self> {
use Constructor::*;
match (ctor, *self) {
(Struct, Ty::Tuple(tys)) => tys.iter().copied().collect(),
(Struct, Ty::BigStruct { arity, ty }) => (0..arity).map(|_| *ty).collect(),
(Variant(i), Ty::Enum(tys)) => vec![tys[*i]],
(Variant(_), Ty::BigEnum { ty, .. }) => vec![*ty],
(Bool(..) | IntRange(..) | NonExhaustive | Missing | Wildcard, _) => vec![],
_ => panic!("Unexpected ctor {ctor:?} for type {self:?}"),
}
}
fn is_empty(&self) -> bool {
match *self {
Ty::Bool | Ty::U8 => false,
Ty::Tuple(tys) => tys.iter().any(|ty| ty.is_empty()),
Ty::Enum(tys) => tys.iter().all(|ty| ty.is_empty()),
Ty::BigStruct { arity, ty } => arity != 0 && ty.is_empty(),
Ty::BigEnum { arity, ty } => arity == 0 || ty.is_empty(),
}
}
pub fn ctor_set(&self) -> ConstructorSet<Cx> {
match *self {
Ty::Bool => ConstructorSet::Bool,
Ty::U8 => ConstructorSet::Integers {
range_1: IntRange::from_range(
MaybeInfiniteInt::new_finite_uint(0),
MaybeInfiniteInt::new_finite_uint(255),
RangeEnd::Included,
),
range_2: None,
},
Ty::Tuple(..) | Ty::BigStruct { .. } => ConstructorSet::Struct { empty: false },
Ty::Enum(tys) if tys.is_empty() => ConstructorSet::NoConstructors,
Ty::Enum(tys) => ConstructorSet::Variants {
variants: tys
.iter()
.map(|ty| {
if ty.is_empty() {
VariantVisibility::Empty
} else {
VariantVisibility::Visible
}
})
.collect(),
non_exhaustive: false,
},
Ty::BigEnum { arity: 0, .. } => ConstructorSet::NoConstructors,
Ty::BigEnum { arity, ty } => {
let vis = if ty.is_empty() {
VariantVisibility::Empty
} else {
VariantVisibility::Visible
};
ConstructorSet::Variants {
variants: (0..arity).map(|_| vis).collect(),
non_exhaustive: false,
}
}
}
}
pub fn write_variant_name(
&self,
f: &mut std::fmt::Formatter<'_>,
ctor: &Constructor<Cx>,
) -> std::fmt::Result {
match (*self, ctor) {
(Ty::Tuple(..), _) => Ok(()),
(Ty::BigStruct { .. }, _) => write!(f, "BigStruct"),
(Ty::Enum(..), Constructor::Variant(i)) => write!(f, "Enum::Variant{i}"),
(Ty::BigEnum { .. }, Constructor::Variant(i)) => write!(f, "BigEnum::Variant{i}"),
_ => write!(f, "{:?}::{:?}", self, ctor),
}
}
}
/// Compute usefulness in our simple context (and set up tracing for easier debugging).
pub fn compute_match_usefulness<'p>(
arms: &[MatchArm<'p, Cx>],
ty: Ty,
scrut_validity: PlaceValidity,
complexity_limit: Option<usize>,
) -> Result<UsefulnessReport<'p, Cx>, ()> {
init_tracing();
rustc_pattern_analysis::usefulness::compute_match_usefulness(
&Cx,
arms,
ty,
scrut_validity,
complexity_limit,
)
}
#[derive(Debug)]
pub struct Cx;
/// The context for pattern analysis. Forwards anything interesting to `Ty` methods.
impl PatCx for Cx {
type Ty = Ty;
type Error = ();
type VariantIdx = usize;
type StrLit = ();
type ArmData = ();
type PatData = ();
fn is_exhaustive_patterns_feature_on(&self) -> bool {
false
}
fn ctor_arity(&self, ctor: &Constructor<Self>, ty: &Self::Ty) -> usize {
ty.sub_tys(ctor).len()
}
fn ctor_sub_tys<'a>(
&'a self,
ctor: &'a Constructor<Self>,
ty: &'a Self::Ty,
) -> impl Iterator<Item = (Self::Ty, PrivateUninhabitedField)> + ExactSizeIterator + Captures<'a>
{
ty.sub_tys(ctor).into_iter().map(|ty| (ty, PrivateUninhabitedField(false)))
}
fn ctors_for_ty(&self, ty: &Self::Ty) -> Result<ConstructorSet<Self>, Self::Error> {
Ok(ty.ctor_set())
}
fn write_variant_name(
f: &mut std::fmt::Formatter<'_>,
ctor: &Constructor<Self>,
ty: &Self::Ty,
) -> std::fmt::Result {
ty.write_variant_name(f, ctor)
}
fn bug(&self, fmt: std::fmt::Arguments<'_>) -> Self::Error {
panic!("{}", fmt)
}
/// Abort when reaching the complexity limit. This is what we'll check in tests.
fn complexity_exceeded(&self) -> Result<(), Self::Error> {
Err(())
}
}
/// Construct a single pattern; see `pats!()`.
#[allow(unused_macros)]
macro_rules! pat {
($($rest:tt)*) => {{
let mut vec = pats!($($rest)*);
vec.pop().unwrap()
}};
}
/// A macro to construct patterns. Called like `pats!(type_expr; pattern, pattern, ..)` and returns
/// a `Vec<DeconstructedPat>`. A pattern can be nested and looks like `Constructor(pat, pat)` or
/// `Constructor { .i: pat, .j: pat }`, where `Constructor` is `Struct`, `Variant.i` (with index
/// `i`), as well as booleans and integer ranges.
///
/// The general structure of the macro is a tt-muncher with several stages identified with
/// `@something(args)`. The args are a key-value list (the keys ensure we don't mix the arguments
/// around) which is passed down and modified as needed. We then parse token-trees from
/// left-to-right. Non-trivial recursion happens when we parse the arguments to a pattern: we
/// recurse to parse the tokens inside `{..}`/`(..)`, and then we continue parsing anything that
/// follows.
macro_rules! pats {
// Entrypoint
// Parse `type; ..`
($ty:expr; $($rest:tt)*) => {{
#[allow(unused_imports)]
use rustc_pattern_analysis::{
constructor::{Constructor, IntRange, MaybeInfiniteInt, RangeEnd},
pat::DeconstructedPat,
};
let ty = $ty;
// The heart of the macro is designed to push `IndexedPat`s into a `Vec`, so we work around
// that.
let sub_tys = ::std::iter::repeat(&ty);
let mut vec = Vec::new();
pats!(@ctor(vec:vec, sub_tys:sub_tys, idx:0) $($rest)*);
vec.into_iter().map(|ipat| ipat.pat).collect::<Vec<_>>()
}};
// Parse `constructor ..`
(@ctor($($args:tt)*) true $($rest:tt)*) => {{
let ctor = Constructor::Bool(true);
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) false $($rest:tt)*) => {{
let ctor = Constructor::Bool(false);
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) Struct $($rest:tt)*) => {{
let ctor = Constructor::Struct;
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) ( $($fields:tt)* ) $($rest:tt)*) => {{
let ctor = Constructor::Struct; // tuples
pats!(@pat($($args)*, ctor:ctor) ( $($fields)* ) $($rest)*)
}};
(@ctor($($args:tt)*) Variant.$variant:ident $($rest:tt)*) => {{
let ctor = Constructor::Variant($variant);
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) Variant.$variant:literal $($rest:tt)*) => {{
let ctor = Constructor::Variant($variant);
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) _ $($rest:tt)*) => {{
let ctor = Constructor::Wildcard;
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
// Integers and int ranges
(@ctor($($args:tt)*) $($start:literal)?..$end:literal $($rest:tt)*) => {{
let ctor = Constructor::IntRange(IntRange::from_range(
pats!(@rangeboundary- $($start)?),
pats!(@rangeboundary+ $end),
RangeEnd::Excluded,
));
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) $($start:literal)?.. $($rest:tt)*) => {{
let ctor = Constructor::IntRange(IntRange::from_range(
pats!(@rangeboundary- $($start)?),
pats!(@rangeboundary+),
RangeEnd::Excluded,
));
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) $($start:literal)?..=$end:literal $($rest:tt)*) => {{
let ctor = Constructor::IntRange(IntRange::from_range(
pats!(@rangeboundary- $($start)?),
pats!(@rangeboundary+ $end),
RangeEnd::Included,
));
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
(@ctor($($args:tt)*) $int:literal $($rest:tt)*) => {{
let ctor = Constructor::IntRange(IntRange::from_range(
pats!(@rangeboundary- $int),
pats!(@rangeboundary+ $int),
RangeEnd::Included,
));
pats!(@pat($($args)*, ctor:ctor) $($rest)*)
}};
// Utility to manage range boundaries.
(@rangeboundary $sign:tt $int:literal) => { MaybeInfiniteInt::new_finite_uint($int) };
(@rangeboundary -) => { MaybeInfiniteInt::NegInfinity };
(@rangeboundary +) => { MaybeInfiniteInt::PosInfinity };
// Parse subfields: `(..)` or `{..}`
// Constructor with no fields, e.g. `bool` or `Variant.1`.
(@pat($($args:tt)*) $(,)?) => {
pats!(@pat($($args)*) {})
};
(@pat($($args:tt)*) , $($rest:tt)*) => {
pats!(@pat($($args)*) {}, $($rest)*)
};
// `(..)` and `{..}` are treated the same.
(@pat($($args:tt)*) ( $($subpat:tt)* ) $($rest:tt)*) => {{
pats!(@pat($($args)*) { $($subpat)* } $($rest)*)
}};
(@pat(vec:$vec:expr, sub_tys:$sub_tys:expr, idx:$idx:expr, ctor:$ctor:expr) { $($fields:tt)* } $($rest:tt)*) => {{
let sub_tys = $sub_tys;
let index = $idx;
// Silly dance to work with both a vec and `iter::repeat()`.
let ty = *(&sub_tys).clone().into_iter().nth(index).unwrap();
let ctor = $ctor;
let ctor_sub_tys = &ty.sub_tys(&ctor);
#[allow(unused_mut)]
let mut fields = Vec::new();
// Parse subpatterns (note the leading comma).
pats!(@fields(idx:0, vec:fields, sub_tys:ctor_sub_tys) ,$($fields)*);
let arity = ctor_sub_tys.len();
let pat = DeconstructedPat::new(ctor, fields, arity, ty, ()).at_index(index);
$vec.push(pat);
// Continue parsing further patterns.
pats!(@fields(idx:index+1, vec:$vec, sub_tys:sub_tys) $($rest)*);
}};
// Parse fields one by one.
// No fields left.
(@fields($($args:tt)*) $(,)?) => {};
// `.i: pat` sets the current index to `i`.
(@fields(idx:$_idx:expr, $($args:tt)*) , .$idx:literal : $($rest:tt)*) => {{
pats!(@ctor($($args)*, idx:$idx) $($rest)*);
}};
(@fields(idx:$_idx:expr, $($args:tt)*) , .$idx:ident : $($rest:tt)*) => {{
pats!(@ctor($($args)*, idx:$idx) $($rest)*);
}};
// Field without an explicit index; we use the current index which gets incremented above.
(@fields(idx:$idx:expr, $($args:tt)*) , $($rest:tt)*) => {{
pats!(@ctor($($args)*, idx:$idx) $($rest)*);
}};
}