@@ -312,32 +312,32 @@ public class ThreadPoolExecutorDemo {
312
312
** Output:**
313
313
314
314
```
315
- pool-1-thread-2 Start. Time = Tue Nov 12 20:59:44 CST 2019
316
- pool-1-thread-5 Start. Time = Tue Nov 12 20:59:44 CST 2019
317
- pool-1-thread-4 Start. Time = Tue Nov 12 20:59:44 CST 2019
318
- pool-1-thread-1 Start. Time = Tue Nov 12 20:59:44 CST 2019
319
- pool-1-thread-3 Start. Time = Tue Nov 12 20:59:44 CST 2019
320
- pool-1-thread-5 End. Time = Tue Nov 12 20:59:49 CST 2019
321
- pool-1-thread-3 End. Time = Tue Nov 12 20:59:49 CST 2019
322
- pool-1-thread-2 End. Time = Tue Nov 12 20:59:49 CST 2019
323
- pool-1-thread-4 End. Time = Tue Nov 12 20:59:49 CST 2019
324
- pool-1-thread-1 End . Time = Tue Nov 12 20:59:49 CST 2019
325
- pool-1-thread-2 Start . Time = Tue Nov 12 20:59:49 CST 2019
326
- pool-1-thread-1 Start. Time = Tue Nov 12 20:59:49 CST 2019
327
- pool-1-thread-4 Start. Time = Tue Nov 12 20:59:49 CST 2019
328
- pool-1-thread-3 Start. Time = Tue Nov 12 20:59:49 CST 2019
329
- pool-1-thread-5 Start. Time = Tue Nov 12 20:59:49 CST 2019
330
- pool-1-thread-2 End. Time = Tue Nov 12 20:59:54 CST 2019
331
- pool-1-thread-3 End. Time = Tue Nov 12 20:59:54 CST 2019
332
- pool-1-thread-4 End. Time = Tue Nov 12 20:59:54 CST 2019
333
- pool-1-thread-5 End. Time = Tue Nov 12 20:59:54 CST 2019
334
- pool-1-thread-1 End. Time = Tue Nov 12 20:59:54 CST 2019
315
+ pool-1-thread-3 Start. Time = Sun Apr 12 11:14:37 CST 2020
316
+ pool-1-thread-5 Start. Time = Sun Apr 12 11:14:37 CST 2020
317
+ pool-1-thread-2 Start. Time = Sun Apr 12 11:14:37 CST 2020
318
+ pool-1-thread-1 Start. Time = Sun Apr 12 11:14:37 CST 2020
319
+ pool-1-thread-4 Start. Time = Sun Apr 12 11:14:37 CST 2020
320
+ pool-1-thread-3 End. Time = Sun Apr 12 11:14:42 CST 2020
321
+ pool-1-thread-4 End. Time = Sun Apr 12 11:14:42 CST 2020
322
+ pool-1-thread-1 End. Time = Sun Apr 12 11:14:42 CST 2020
323
+ pool-1-thread-5 End. Time = Sun Apr 12 11:14:42 CST 2020
324
+ pool-1-thread-1 Start . Time = Sun Apr 12 11:14:42 CST 2020
325
+ pool-1-thread-2 End . Time = Sun Apr 12 11:14:42 CST 2020
326
+ pool-1-thread-5 Start. Time = Sun Apr 12 11:14:42 CST 2020
327
+ pool-1-thread-4 Start. Time = Sun Apr 12 11:14:42 CST 2020
328
+ pool-1-thread-3 Start. Time = Sun Apr 12 11:14:42 CST 2020
329
+ pool-1-thread-2 Start. Time = Sun Apr 12 11:14:42 CST 2020
330
+ pool-1-thread-1 End. Time = Sun Apr 12 11:14:47 CST 2020
331
+ pool-1-thread-4 End. Time = Sun Apr 12 11:14:47 CST 2020
332
+ pool-1-thread-5 End. Time = Sun Apr 12 11:14:47 CST 2020
333
+ pool-1-thread-3 End. Time = Sun Apr 12 11:14:47 CST 2020
334
+ pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020
335
335
336
336
```
337
337
338
338
### 4.2 线程池原理分析
339
339
340
- 承接 4.1 节,我们通过代码输出结果可以看出:** 线程池每次会同时执行 5 个任务,这 5 个任务执行完之后,剩余的 5 个任务才会被执行 。** 大家可以先通过上面讲解的内容,分析一下到底是咋回事?(自己独立思考一会)
340
+ 承接 4.1 节,我们通过代码输出结果可以看出:** 线程首先会先执行 5 个任务,然后这些任务有任务被执行完的话,就会去拿新的任务执行 。** 大家可以先通过上面讲解的内容,分析一下到底是咋回事?(自己独立思考一会)
341
341
342
342
现在,我们就分析上面的输出内容来简单分析一下线程池原理。
343
343
@@ -346,11 +346,11 @@ pool-1-thread-1 End. Time = Tue Nov 12 20:59:54 CST 2019
346
346
``` java
347
347
// 存放线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount)
348
348
private final AtomicInteger ctl = new AtomicInteger (ctlOf(RUNNING , 0 ));
349
-
349
+
350
350
private static int workerCountOf(int c) {
351
351
return c & CAPACITY ;
352
352
}
353
-
353
+ // 任务队列
354
354
private final BlockingQueue<Runnable > workQueue;
355
355
356
356
public void execute(Runnable command) {
@@ -390,11 +390,120 @@ pool-1-thread-1 End. Time = Tue Nov 12 20:59:54 CST 2019
390
390
391
391
![ 图解线程池实现原理] ( https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-7/图解线程池实现原理.png )
392
392
393
+
394
+
395
+ ** ` addWorker ` 这个方法主要用来创建新的工作线程,如果返回true说明创建和启动工作线程成功,否则的话返回的就是false。**
396
+
397
+ ``` java
398
+ // 全局锁,并发操作必备
399
+ private final ReentrantLock mainLock = new ReentrantLock ();
400
+ // 跟踪线程池的最大大小,只有在持有全局锁mainLock的前提下才能访问此集合
401
+ private int largestPoolSize;
402
+ // 工作线程集合,存放线程池中所有的(活跃的)工作线程,只有在持有全局锁mainLock的前提下才能访问此集合
403
+ private final HashSet<Worker > workers = new HashSet<> ();
404
+ // 获取线程池状态
405
+ private static int runStateOf(int c) { return c & ~ CAPACITY ; }
406
+ // 判断线程池的状态是否为 Running
407
+ private static boolean isRunning(int c) {
408
+ return c < SHUTDOWN ;
409
+ }
410
+
411
+
412
+ /**
413
+ * 添加新的工作线程到线程池
414
+ * @param firstTask 要执行
415
+ * @param core参数为true的话表示使用线程池的基本大小,为false使用线程池最大大小
416
+ * @return 添加成功就返回true否则返回false
417
+ */
418
+ private boolean addWorker(Runnable firstTask, boolean core) {
419
+ retry:
420
+ for (;;) {
421
+ // 这两句用来获取线程池的状态
422
+ int c = ctl. get();
423
+ int rs = runStateOf(c);
424
+
425
+ // Check if queue empty only if necessary.
426
+ if (rs >= SHUTDOWN &&
427
+ ! (rs == SHUTDOWN &&
428
+ firstTask == null &&
429
+ ! workQueue. isEmpty()))
430
+ return false ;
431
+
432
+ for (;;) {
433
+ // 获取线程池中线程的数量
434
+ int wc = workerCountOf(c);
435
+ // core参数为true的话表明队列也满了,线程池大小变为 maximumPoolSize
436
+ if (wc >= CAPACITY ||
437
+ wc >= (core ? corePoolSize : maximumPoolSize))
438
+ return false ;
439
+ // 原子操作将workcount的数量加1
440
+ if (compareAndIncrementWorkerCount(c))
441
+ break retry;
442
+ // 如果线程的状态改变了就再次执行上述操作
443
+ c = ctl. get();
444
+ if (runStateOf(c) != rs)
445
+ continue retry;
446
+ // else CAS failed due to workerCount change; retry inner loop
447
+ }
448
+ }
449
+ // 标记工作线程是否启动成功
450
+ boolean workerStarted = false ;
451
+ // 标记工作线程是否创建成功
452
+ boolean workerAdded = false ;
453
+ Worker w = null ;
454
+ try {
455
+
456
+ w = new Worker (firstTask);
457
+ final Thread t = w. thread;
458
+ if (t != null ) {
459
+ // 加锁
460
+ final ReentrantLock mainLock = this . mainLock;
461
+ mainLock. lock();
462
+ try {
463
+ // 获取线程池状态
464
+ int rs = runStateOf(ctl. get());
465
+ // rs < SHUTDOWN 如果线程池状态依然为RUNNING,并且线程的状态是存活的话,就会将工作线程添加到工作线程集合中
466
+ // (rs=SHUTDOWN && firstTask == null)如果线程池状态小于STOP,也就是RUNNING或者SHUTDOWN状态下,同时传入的任务实例firstTask为null,则需要添加到工作线程集合和启动新的Worker
467
+ // firstTask == null证明只新建线程而不执行任务
468
+ if (rs < SHUTDOWN ||
469
+ (rs == SHUTDOWN && firstTask == null )) {
470
+ if (t. isAlive()) // precheck that t is startable
471
+ throw new IllegalThreadStateException ();
472
+ workers. add(w);
473
+ // 更新当前工作线程的最大容量
474
+ int s = workers. size();
475
+ if (s > largestPoolSize)
476
+ largestPoolSize = s;
477
+ // 工作线程是否启动成功
478
+ workerAdded = true ;
479
+ }
480
+ } finally {
481
+ // 释放锁
482
+ mainLock. unlock();
483
+ }
484
+ // // 如果成功添加工作线程,则调用Worker内部的线程实例t的Thread#start()方法启动真实的线程实例
485
+ if (workerAdded) {
486
+ t. start();
487
+ // / 标记线程启动成功
488
+ workerStarted = true ;
489
+ }
490
+ }
491
+ } finally {
492
+ // 线程启动失败,需要从工作线程中移除对应的Worker
493
+ if (! workerStarted)
494
+ addWorkerFailed(w);
495
+ }
496
+ return workerStarted;
497
+ }
498
+ ```
499
+
500
+ 更多关于线程池源码分析的内容推荐这篇文章:《[ JUC线程池ThreadPoolExecutor源码分析] ( http://www.throwable.club/2019/07/15/java-concurrency-thread-pool-executor/ ) 》
501
+
393
502
现在,让我们在回到 4.1 节我们写的 Demo, 现在应该是不是很容易就可以搞懂它的原理了呢?
394
503
395
504
没搞懂的话,也没关系,可以看看我的分析:
396
505
397
- > 我们在代码中模拟了 10 个任务,我们配置的核心线程数为 5 、等待队列容量为 100 ,所以每次只可能存在 5 个任务同时执行,剩下的 5 个任务会被放到等待队列中去。当前的 5 个任务执行完成后,才会执行剩下的 5 个任务 。
506
+ > 我们在代码中模拟了 10 个任务,我们配置的核心线程数为 5 、等待队列容量为 100 ,所以每次只可能存在 5 个任务同时执行,剩下的 5 个任务会被放到等待队列中去。当前的5个任务中如果有任务被执行完了,线程池就会去拿新的任务执行 。
398
507
399
508
### 4.3 几个常见的对比
400
509
0 commit comments