-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathexperiment.py
251 lines (198 loc) · 11.3 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import pandas as pd, numpy as np
import pickle, time
from sklearn.model_selection import StratifiedKFold, KFold, train_test_split
from hyperopt import fmin, tpe, Trials, STATUS_OK, STATUS_FAIL
from datetime import datetime
from cat_counter import CatCounter
#from pandas.io.common import EmptyDataError
import os
class Experiment(object):
def __init__(self, learning_task='classification', bst_name=None, n_estimators=5000, hyperopt_evals=50,
compute_counters=True, counters_sort_col=None, holdout_size=0,
train_path=None, test_path=None, cd_path=None, output_folder_path='./'):
self.learning_task, self.bst_name = learning_task, bst_name
self.compute_counters = compute_counters
self.holdout_size = holdout_size
self.counters_sort_col = counters_sort_col
self.n_estimators, self.best_loss = n_estimators, np.inf
self.best_n_estimators = None
self.hyperopt_evals, self.hyperopt_eval_num = hyperopt_evals, 0
self.train_path, self.test_path, self.cd_path = train_path, test_path, cd_path
self.output_folder_path = os.path.join(output_folder_path, '')
self.default_params, self.best_params = None, None
self.title = None
if self.learning_task == 'classification':
self.metric = 'logloss'
elif self.learning_task == 'regression':
self.metric = 'rmse'
else:
raise ValueError('Task type must be "classification" or "regression"')
def read_file(self, file_name, target_col):
X = pd.read_csv(file_name, sep='\t', header=None)
if self.learning_task == 'classification':
y = np.maximum(X[target_col].values, 0)
else:
y = X[target_col].values
X.drop(target_col, axis=1, inplace=True)
return X, y
def read_data(self):
cols = pd.read_csv(self.cd_path, sep='\t', header=None)
target_col = cols[0][np.where(cols[1] == 'Target')[0][0]]
cat_cols = cols[cols[1] == "Categ"][0].values
X_train, y_train = self.read_file(self.train_path, target_col)
X_test, y_test = self.read_file(self.test_path, target_col)
data = pd.concat([X_train, X_test])
data[cat_cols] = data[cat_cols].apply(lambda x: x.astype('category').cat.codes)
data = np.array(data).astype('float')
X_train, X_test = data[:X_train.shape[0]], data[X_train.shape[0]:]
cat_cols[cat_cols > target_col] = cat_cols[cat_cols > target_col] - 1
return X_train, y_train, X_test, y_test, cat_cols
def convert_to_dataset(self, data, label, cat_cols=None):
raise NotImplementedError('Method convert_to_dataset is not implemented.')
def preprocess_cat_cols(self, X_train, y_train, cat_cols, X_test=None, cc=None):
if self.compute_counters == False:
return None
if cc is None:
sort_values = None if self.counters_sort_col is None else X_train[:, self.counters_sort_col]
cc = CatCounter(self.learning_task, sort_values)
X_train[:,cat_cols] = cc.fit(X_train[:,cat_cols], y_train)
else:
X_train[:,cat_cols] = cc.transform(X_train[:,cat_cols])
if not X_test is None:
X_test[:,cat_cols] = cc.transform(X_test[:,cat_cols])
return cc
def split_and_preprocess(self, X_train, y_train, X_test, y_test, cat_cols, n_splits=5, random_state=0):
if self.holdout_size > 0:
print('Holdout is used for counters.')
X_train, X_hout, y_train, y_hout = train_test_split(X_train, y_train,
test_size=self.holdout_size,
random_state=random_state)
cc = self.preprocess_cat_cols(X_hout, y_hout, cat_cols)
else:
cc = None
CVSplit = KFold if self.learning_task == 'regression' else StratifiedKFold
cv = CVSplit(n_splits=n_splits, shuffle=True, random_state=random_state)
cv_pairs = []
for train_index, test_index in cv.split(X_train, y_train):
train, test = X_train[train_index], X_train[test_index]
_ = self.preprocess_cat_cols(train, y_train[train_index], cat_cols, test, cc)
dtrain = self.convert_to_dataset(train.astype(float), y_train[train_index], cat_cols)
dtest = self.convert_to_dataset(test.astype(float), y_train[test_index], cat_cols)
cv_pairs.append((dtrain, dtest))
_ = self.preprocess_cat_cols(X_train, y_train, cat_cols, X_test, cc)
dtrain = self.convert_to_dataset(X_train.astype(float), y_train, cat_cols)
dtest = self.convert_to_dataset(X_test.astype(float), y_test, cat_cols)
return cv_pairs, (dtrain, dtest)
def fit(self, params, dtrain, dtest, n_estimators):
raise NotImplementedError('Method train is not implemented.')
def predict(self, bst, dtest, X_test):
raise NotImplementedError('Method predict is not implemented.')
def preprocess_params(self, params):
raise NotImplementedError('Method preprocess_params is not implemented.')
def run_cv(self, cv_pairs, params=None, n_estimators=None, verbose=False):
params = params or self.default_params
n_estimators = n_estimators or self.n_estimators
params = self.preprocess_params(params)
evals_results, start_time = [], time.time()
for dtrain, dtest in cv_pairs:
_, evals_result = self.fit(params, dtrain, dtest, n_estimators)
evals_results.append(evals_result)
mean_evals_results = np.mean(evals_results, axis=0)
best_n_estimators = np.argmin(mean_evals_results) + 1
eval_time = time.time() - start_time
cv_result = {'loss': mean_evals_results[best_n_estimators - 1],
'best_n_estimators': best_n_estimators,
'eval_time': eval_time,
'status': STATUS_FAIL if np.isnan(mean_evals_results[best_n_estimators - 1]) else STATUS_OK,
'params': params.copy()}
self.best_loss = min(self.best_loss, cv_result['loss'])
self.hyperopt_eval_num += 1
cv_result.update({'hyperopt_eval_num': self.hyperopt_eval_num, 'best_loss': self.best_loss})
if verbose:
print '[{0}/{1}]\teval_time={2:.2f} sec\tcurrent_{3}={4:.6f}\tmin_{3}={5:.6f}'.format(
self.hyperopt_eval_num, self.hyperopt_evals, eval_time,
self.metric, cv_result['loss'], self.best_loss)
return cv_result
def run_test(self, dtrain, dtest, X_test=None, params=None, n_estimators=None, custom_metric=None, seed=0):
params = params or self.best_params or self.default_params
n_estimators = n_estimators or self.best_n_estimators or self.n_estimators
params = self.preprocess_params(params)
start_time = time.time()
bst, evals_result = self.fit(params, dtrain, dtest, n_estimators, seed=seed)
eval_time = time.time() - start_time
preds = self.predict(bst, dtest, X_test)
result = {'loss': evals_result[-1], 'bst': bst, 'n_estimators': n_estimators,
'eval_time': eval_time, 'status': STATUS_OK, 'params': params.copy(),
'preds': preds}
if custom_metric is not None:
if type(custom_metric) is not dict:
raise TypeError("custom_metric argument should be dict")
pred = self.predict(bst, dtest, X_test)
for title, func in custom_metric.iteritems():
score = func(dtest.get_label(), pred, sample_weight=None) # TODO weights
result[title] = score
return result
def optimize_params(self, cv_pairs, max_evals=None, verbose=True):
max_evals = max_evals or self.hyperopt_evals
self.trials = Trials()
self.hyperopt_eval_num, self.best_loss = 0, np.inf
_ = fmin(fn=lambda params: self.run_cv(cv_pairs, params, verbose=verbose),
space=self.space, algo=tpe.suggest, max_evals=max_evals, trials=self.trials, rseed=1)
self.best_params = self.trials.best_trial['result']['params']
self.best_n_estimators = self.trials.best_trial['result']['best_n_estimators']
return self.trials.best_trial['result']
def dump(self, preds, elementwise_losses, test_losses, file_name):
results = {'trials': self.trials, 'best_params': self.best_params,
'best_n_estimators': self.best_n_estimators,
'preds': preds, 'elementwise_losses': elementwise_losses, 'test_losses': test_losses}
with open(file_name, 'wb') as f:
pickle.dump(results, f)
def load(self, file_name):
with open(file_name, 'r') as f:
results = pickle.load(f)
self.trials = results['trials']
self.best_params = results['best_params']
self.best_n_estimators = results['best_n_estimators']
preds = results['preds']
losses = results['losses']
test_loss = results['test_loss']
return preds, losses, test_loss
def print_result(self, result, name='', extra_keys=None):
print '%s:\n' % name
print '%s = %s' % (self.metric, result['loss'])
if 'best_n_estimators' in result.keys():
print 'best_n_estimators = %s' % result['best_n_estimators']
elif 'n_estimators' in result.keys():
print 'n_estimators = %s' % result['n_estimators']
print 'params = %s' % result['params']
if extra_keys is not None:
for k in extra_keys:
if k in result:
print "%s = %f" % (k, result[k])
def elementwise_loss(self, y, p):
if self.learning_task == 'classification':
p_ = np.clip(p, 1e-16, 1-1e-16)
return - y * np.log(p_) - (1 - y) * np.log(1 - p_)
return (y - p) ** 2
def run(self):
print 'Loading and preprocessing dataset...'
X_train, y_train, X_test, y_test, cat_cols = self.read_data()
cv_pairs, (dtrain, dtest) = self.split_and_preprocess(X_train, y_train, X_test, y_test, cat_cols)
print 'Optimizing params...'
cv_result = self.optimize_params(cv_pairs)
self.print_result(cv_result, '\nBest result on cv')
print '\nTraining algorithm with the tuned parameters for different seed...'
preds, test_losses, elementwise_losses = [], [], []
for seed in range(5):
test_result = self.run_test(dtrain, dtest, X_test, seed=seed)
preds.append(test_result['preds'])
test_losses.append(test_result['loss'])
elementwise_losses.append(self.elementwise_loss(y_test, preds[-1]))
print 'For seed=%d Test\'s %s : %.5f' % (seed, self.metric, test_losses[-1])
print '\nTest\'s %s mean: %.5f, Test\'s %s std: %.5f' % (self.metric, np.mean(test_losses), self.metric, np.std(test_losses))
if not self.output_folder_path is None:
date = datetime.now().strftime('%Y%m%d-%H%M%S')
dataset_name = self.train_path.replace('/', ' ').strip().split()[-2]
file_name = '{}{}_results_{}_{}.pkl'.format(self.output_folder_path, self.bst_name, dataset_name, date)
self.dump(preds, elementwise_losses, test_losses, file_name)
print 'Results are saved to %s' % file_name