-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathrun_experiment_xgboost.py
executable file
·211 lines (170 loc) · 8.52 KB
/
run_experiment_xgboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
__author__ = "noxoomo"
__email__ = "noxoomo@yandex-team.ru"
import json
import subprocess
import os
import sys
from subprocess import Popen
import subprocess
import argparse
import os
import os.path
import pandas as pd
import numpy as np
xgboost_path = "./xgboost"
fit_template = " xgboost.conf nthread=16 tree_method=gpu_hist early_stopping_rounds=100 "
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--base-step',
type=float,
required=True)
parser.add_argument('--base-iter',
type=float,
required=True)
parser.add_argument('--mult',
type=float,
required=True)
parser.add_argument('--count',
type=int,
required=True)
parser.add_argument('--device',
required=True)
parser.add_argument('--target',
required=True)
parser.add_argument('--test-metric',
required=True)
parser.add_argument('--pool-dir',
required=True)
parser.add_argument('--read_pool_args')
parser.add_argument('--other-args')
parser.add_argument('--skip-up-tasks', action='store_true')
parser.add_argument('--skip-down-tasks', action='store_true')
parser.add_argument('--bins',type=int,default=31)
parser.add_argument('--leaves',type=int,default=64)
parser.add_argument('--depth',type=int,default=6)
args = parser.parse_args(sys.argv[1:])
pool_dir = args.pool_dir
def get_fit_template():
return fit_template + "max_bin={__bins} max_depth={__depth} max_leaves={__leaves}".format(__bins=args.bins,
__depth=args.depth,
__leaves=args.leaves)
def get_algo_name():
return "max_bin={__bins} max_depth={__depth} max_leaves={__leaves}".format(__bins=args.bins,
__depth=args.depth,
__leaves=args.leaves)
def get_xgboost_times(log_path):
elapsed_times = []
with open(log_path, 'r') as input:
for line in input.readlines():
if 'boosting round' in line and 'sec elapsed' in line:
elapsed_times.append(float(line.split(',')[1].strip().split(' ')[0]) * 1000)
return np.array(elapsed_times)
def estimate_fit_time(log_path, iter):
times = get_xgboost_times(log_path)[0:iter]
#don't account for data preparation
return np.mean((times[1:]-times[0:-1])[1:]) * iter
def get_metric_from_xgboost(log_path, metric):
scores = []
with open(log_path, 'r') as input:
for line in input.readlines():
if 'test-' in line and metric in line:
scores.append(float(line.split(metric+':')[1].split('\t')[0]))
return scores
def get_features_abs_path():
return os.path.join(pool_dir, "features.train")
def get_test_abs_path():
return os.path.join(pool_dir, "features.test")
def set_pool_path(cmd, metric=None):
result = cmd + " data={__features}".format(__features=get_features_abs_path())
if metric is not None:
result = result + " eval[test]={__test} eval_metric={__metric}".format(__test=get_test_abs_path(), __metric=metric)
if args.read_pool_args:
result = result + " " + args.read_pool_args.sp
return result
def set_params(cmd, step, iters, target):
result = cmd + " eta={__step} num_round={__iters} objective={__target}".format(__iters=iters, __step=step, __target=target)
if args.other_args is not None:
result = result + " " + args.other_args
return result
def is_max_optimal(metric):
return "linear" not in metric and "rmse" not in metric
def get_best_score(score_values, metric):
if is_max_optimal(metric):
best = max(score_values)
else:
best = min(score_values)
return best
def get_best_iter(scores, metric):
if is_max_optimal(metric):
return np.argmax(scores)
else:
return np.argmin(scores)
def get_best_iter_from_log(dir, metric, suffix):
scores = get_metric_from_xgboost(os.path.join(dir, "xgboost_stderr" + suffix), metric)
return get_best_iter(scores, metric)
def get_best_score_from_log(dir, metric, suffix):
scores = get_metric_from_xgboost(os.path.join(dir, "xgboost_stderr" + suffix), metric)
return get_best_score(scores, metric)
def get_fit_time_from_log(dir, iter, suffix):
return estimate_fit_time(os.path.join(dir, "xgboost_stderr" + suffix), iter)
def update_plot_log(step, iter, best_score, best_iter, time, output):
with open(output, 'a+') as outfile:
outfile.write("{__iter}\t{__score}\t{__step}\t{__time}\t{__total}\t{__name}\n".format(__iter=best_iter,
__score=best_score,
__step=step,
__time=time,
__total=iter,
__name=get_algo_name()))
def run_on_device(args, device_id, task_dir, log_suffix):
ensure_dir_exists(task_dir)
cmd = args.split(' ')
print("Running command: {}\n".format(" ".join(cmd)))
env = os.environ.copy()
env['CUDA_VISIBLE_DEVICES'] = str(device_id)
full_path = os.path.join(os.getcwd(), task_dir)
stderr = open(os.path.join(task_dir, "xgboost_stderr" + log_suffix), "w")
stdout = open(os.path.join(task_dir, "xgboost_stdout" + log_suffix), "w")
subprocess.call("touch xgboost.conf", shell=True, env=env, cwd=full_path)
return subprocess.call(cmd, stdout=stdout, stderr=stderr, env=env, cwd=full_path)
def run_on_device_relative(args, device_id, task_dir, log_suffix):
return run_on_device(args, device_id, os.path.join(os.getcwd(), task_dir), log_suffix)
def ensure_dir_exists(dir):
if not os.path.exists(dir):
os.mkdir(dir)
def get_steps(str):
return str.split(",")
def get_dir_for_step(step):
return "step_{__step}".format(__step=step)
def generate_tasks(base_step, base_iter, mult, count, add_up, add_down):
tasks = []
for i in range(0, count):
if add_up:
tasks.append({"step": base_step * (mult ** i), "iter": int(base_iter / (mult ** i))})
if add_down:
tasks.append({"step": base_step / (mult ** i), "iter": int(base_iter * (mult ** i))})
return tasks
add_up = not args.skip_up_tasks
add_down = not args.skip_down_tasks
tasks = generate_tasks(args.base_step, args.base_iter, args.mult, args.count, add_up, add_down)
#fit
for task in tasks:
step_ = task["step"]
iter_ = task["iter"]
task_dir = get_dir_for_step(step_)
base_cmd = xgboost_path + get_fit_template()
if args.other_args:
base_cmd = base_cmd + " " + args.other_args
run_with_quality_calc = set_pool_path(base_cmd, args.test_metric)
run_with_quality_calc = set_params(run_with_quality_calc, step_, iter_, args.target)
quality_log_suffix = ".quality.log"
speed_log_suffix = ".speed.log"
run_on_device_relative(run_with_quality_calc, args.device, task_dir, quality_log_suffix)
best_score = get_best_score_from_log(task_dir, args.test_metric, quality_log_suffix)
best_iter = int(get_best_iter_from_log(task_dir, args.test_metric, quality_log_suffix))
run_for_speed = set_pool_path(base_cmd)
run_for_speed = set_params(run_for_speed, step_, best_iter, args.target)
run_on_device_relative(run_for_speed, args.device, task_dir, speed_log_suffix)
best_time = get_fit_time_from_log(task_dir, best_iter, speed_log_suffix)
update_plot_log(step_, iter_, best_score, best_iter, best_time, "scores_plot.tsv")