-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlosses.py
434 lines (360 loc) · 18.1 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""All functions related to loss computation and optimization.
"""
import torch
import torch.optim as optim
import numpy as np
import pickle
from models import utils as mutils
from sde_lib import VESDE, VPSDE
from flow_models.flow_model import flow_forward
from flow_models.resflow.utils import update_lipschitz
import likelihood
def get_optimizer(config, params, lr=None, beta1=None, eps=None, weight_decay=None):
"""Returns a flax optimizer object based on `config`."""
if lr is None: lr = config.optim.lr
if beta1 is None: beta1 = config.optim.beta1
if eps is None: eps = config.optim.eps
if weight_decay is None: weight_decay = config.optim.weight_decay
if config.optim.optimizer == 'Adam':
optimizer = optim.Adam(params, lr=lr, betas=(beta1, 0.999), eps=eps, weight_decay=weight_decay, amsgrad=config.optim.amsgrad)
elif config.optim.optimizer == 'AdamW':
optimizer = optim.AdamW(params, lr=lr, betas=(beta1, 0.99), eps=eps, weight_decay=weight_decay, amsgrad=config.optim.amsgrad)
else:
raise NotImplementedError(
f'Optimizer {config.optim.optimizer} not supported yet!')
return optimizer
def optimization_manager(config):
"""Returns an optimize_fn based on `config`."""
def optimize_fn(optimizer, params, step, lr=config.optim.lr,
warmup=config.optim.warmup,
grad_clip=config.optim.grad_clip):
"""Optimizes with warmup and gradient clipping (disabled if negative)."""
if warmup > 0:
for g in optimizer.param_groups:
g['lr'] = lr * np.minimum(step / warmup, 1.0)
if grad_clip >= 0:
torch.nn.utils.clip_grad_norm_(params, max_norm=grad_clip)
optimizer.step()
return optimize_fn
def get_sde_loss_fn(config, sde, train, variance='scoreflow'):
"""Create a loss function for training with arbirary SDEs.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
train: `True` for training loss and `False` for evaluation loss.
reduce_mean: If `True`, average the loss across data dimensions. Otherwise sum the loss across data dimensions.
continuous: `True` indicates that the model is defined to take continuous time steps. Otherwise it requires
ad-hoc interpolation to take continuous time steps.
likelihood_weighting: If `True`, weight the mixture of score matching losses
according to https://arxiv.org/abs/2101.09258; otherwise use the weighting recommended in our paper.
eps: A `float` number. The smallest time step to sample from.
Returns:
A loss function.
"""
reduce_op = torch.mean if config.training.reduce_mean else torch.sum
def loss_fn(model, batch, st=False, recon_loss=None, importance_sampling=None):
"""Compute the loss function.
Args:
model: A score model.
batch: A mini-batch of training data.
Returns:
loss: A scalar that represents the average loss value across the mini-batch.
"""
if recon_loss is None:
recon_loss = config.training.reconstruction_loss
if importance_sampling is None:
importance_sampling = config.training.importance_sampling
# if st:
# assert not recon_loss
t_min = sde.get_t_min(config, st)
t, Z = sde.get_diffusion_time(config, batch.shape[0], batch.device, t_min, importance_sampling=importance_sampling)
score_fn = mutils.get_score_fn(config, sde, model, None, train=train, continuous=config.training.continuous)
z = torch.randn_like(batch)
mean, std = sde.marginal_prob(batch, t)
perturbed_data = mean + std[:, None, None, None] * z
score = score_fn(perturbed_data, t)
if importance_sampling:
losses = torch.square(score * std[:, None, None, None] + z)
losses = 0.5 * Z * reduce_op(losses.reshape(losses.shape[0], -1), dim=-1)
else:
if config.training.likelihood_weighting:
g2 = sde.sde(torch.zeros_like(batch), t)[1] ** 2
losses = torch.square(score + z / std[:, None, None, None])
losses = 0.5 * Z * reduce_op(losses.reshape(losses.shape[0], -1), dim=-1) * g2
else:
losses = torch.square(score * std[:, None, None, None] + z)
losses = 0.5 * Z * reduce_op(losses.reshape(losses.shape[0], -1), dim=-1)
if recon_loss:
eps_vec = torch.ones((batch.shape[0]), device=batch.device) * t_min
mean, std = sde.marginal_prob(batch, eps_vec)
z = torch.randn_like(batch)
perturbed_data = mean + std[:, None, None, None] * z
score = score_fn(perturbed_data, eps_vec)
alpha, beta = sde.marginal_prob(torch.ones_like(batch), eps_vec)
q_mean = perturbed_data / alpha + beta[:, None, None, None] ** 2 * score / alpha
if variance == 'ddpm':
q_std = beta
elif variance == 'scoreflow':
q_std = beta / torch.mean(alpha, axis=(1, 2, 3))
n_dim = np.prod(batch.shape[1:])
p_entropy = n_dim / 2. * (np.log(2 * np.pi) + 2 * torch.log(std) + 1.)
q_recon = n_dim / 2. * (np.log(2 * np.pi) + 2 * torch.log(q_std)) + 0.5 / (q_std ** 2) * torch.square(batch - q_mean).sum(axis=(1, 2, 3))
reconstruction_loss = q_recon - p_entropy
if config.training.reduce_mean:
reconstruction_loss = reconstruction_loss / n_dim
losses = losses + reconstruction_loss
return losses
return loss_fn
def get_smld_loss_fn(config, vesde, train):
"""Legacy code to reproduce previous results on SMLD(NCSN). Not recommended for new work."""
assert isinstance(vesde, VESDE), "SMLD training only works for VESDEs."
# Previous SMLD models assume descending sigmas
smld_sigma_array = torch.flip(vesde.discrete_sigmas, dims=(0,))
reduce_op = torch.mean if config.training.reduce_mean else torch.sum
def loss_fn(model, batch):
model_fn = mutils.get_model_fn(model, train=train)
labels = torch.randint(0, vesde.N, (batch.shape[0],), device=batch.device)
sigmas = smld_sigma_array.to(batch.device)[labels]
noise = torch.randn_like(batch) * sigmas[:, None, None, None]
perturbed_data = noise + batch
score = model_fn(perturbed_data, labels)
target = -noise / (sigmas ** 2)[:, None, None, None]
losses = torch.square(score - target)
losses = reduce_op(losses.reshape(losses.shape[0], -1), dim=-1) * sigmas ** 2
loss = torch.mean(losses)
return loss
return loss_fn
def get_ddpm_loss_fn(config, vpsde, train):
"""Legacy code to reproduce previous results on DDPM. Not recommended for new work."""
assert isinstance(vpsde, VPSDE), "DDPM training only works for VPSDEs."
reduce_op = torch.mean if config.training.reduce_mean else torch.sum
def loss_fn(model, batch):
model_fn = mutils.get_model_fn(model, train=train)
labels = torch.randint(0, vpsde.N, (batch.shape[0],), device=batch.device)
sqrt_alphas_cumprod = vpsde.sqrt_alphas_cumprod.to(batch.device)
sqrt_1m_alphas_cumprod = vpsde.sqrt_1m_alphas_cumprod.to(batch.device)
noise = torch.randn_like(batch)
perturbed_data = sqrt_alphas_cumprod[labels, None, None, None] * batch + \
sqrt_1m_alphas_cumprod[labels, None, None, None] * noise
score = model_fn(perturbed_data, labels)
losses = torch.square(score - noise)
losses = reduce_op(losses.reshape(losses.shape[0], -1), dim=-1)
loss = torch.mean(losses)
return loss
return loss_fn
def get_step_fn(config, sde, train, optimize_fn=None, scaler=None):
"""Create a one-step training/evaluation function.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
optimize_fn: An optimization function.
reduce_mean: If `True`, average the loss across data dimensions. Otherwise sum the loss across data dimensions.
continuous: `True` indicates that the model is defined to take continuous time steps.
likelihood_weighting: If `True`, weight the mixture of score matching losses according to
https://arxiv.org/abs/2101.09258; otherwise use the weighting recommended by our paper.
Returns:
A one-step function for training or evaluation.
"""
if config.training.continuous:
loss_fn = get_sde_loss_fn(config, sde, train)
else:
assert not config.training.likelihood_weighting, "Likelihood weighting is not supported for original SMLD/DDPM training."
if isinstance(sde, VESDE):
loss_fn = get_smld_loss_fn(config, sde, train)
elif isinstance(sde, VPSDE):
loss_fn = get_ddpm_loss_fn(config, sde, train)
else:
raise ValueError(f"Discrete training for {sde.__class__.__name__} is not recommended.")
def calculate_logp(batch):
Ts = torch.ones(batch.shape[0], device=config.device) * sde.T
meanT, stdT = sde.marginal_prob(batch, Ts)
z = torch.randn_like(batch)
yT = meanT + stdT[:, None, None, None] * z
log_p = sde.prior_logp(yT)
return log_p
def step_fn(state, flow_state, batch):
"""Running one step of training or evaluation.
This function will undergo `jax.lax.scan` so that multiple steps can be pmapped and jit-compiled together
for faster execution.
Args:
state: A dictionary of training information, containing the score model, optimizer,
EMA status, and number of optimization steps.
batch: A mini-batch of training/evaluation data.
Returns:
losses: The list of loss values of this state and batch.
"""
model = state['model']
optimizer = state['optimizer']
optimizer.zero_grad()
batch_size = batch.shape[0]
num_micro_batch = config.optim.num_micro_batch
losses_ = torch.zeros(batch_size)
for k in range(num_micro_batch):
losses = loss_fn(model, batch[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)])
torch.mean(losses).backward(retain_graph=True)
losses_[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)] = losses.cpu().detach()
optimize_fn(optimizer, model.parameters(), step=state['step'])
state['step'] += 1
state['ema'].update(model.parameters())
return losses_, None, None, None, None
def flow_step_fn_nll(state, flow_state, batch):
"""Running one step of training or evaluation.
This function will undergo `jax.lax.scan` so that multiple steps can be pmapped and jit-compiled together
for faster execution.
Args:
state: A dictionary of training information, containing the score model, optimizer,
EMA status, and number of optimization steps.
flow_state: A dictionary of training information, containing the flow model, optimizer,
EMA status, and number of optimization steps.
batch: A mini-batch of training/evaluation data.
Returns:
losses: The list of loss values of this state and batch.
"""
model = state['model']
flow_model = flow_state['model']
optimizer = state['optimizer']
flow_optimizer = flow_state['optimizer']
batch_size = batch.shape[0]
num_micro_batch = config.optim.num_micro_batch
losses_ = torch.zeros(batch_size)
losses_score_ = torch.zeros(batch_size)
losses_flow_ = torch.zeros(batch_size)
losses_logp_ = torch.zeros(batch_size)
optimizer.zero_grad()
flow_optimizer.zero_grad()
if train:
for k in range(num_micro_batch):
mini_batch = batch[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)]
transformed_mini_batch, losses_flow = flow_forward(config, flow_model, mini_batch, reverse=False)
losses_score = loss_fn(model, transformed_mini_batch, st=config.training.st)
losses_logp = calculate_logp(transformed_mini_batch)
if config.training.reduce_mean:
losses_flow = - losses_flow / np.prod(batch.shape[1:])
losses_logp = - losses_logp / np.prod(batch.shape[1:])
else:
losses_flow = - losses_flow
losses_logp = - losses_logp
assert losses_score.shape == losses_flow.shape == losses_logp.shape == torch.Size([transformed_mini_batch.shape[0]])
losses = losses_score + losses_flow + losses_logp
torch.mean(losses).backward(retain_graph=True)
# save losses
losses_[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)] = losses.cpu().detach()
losses_score_[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)] = losses_score.cpu().detach()
losses_flow_[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)] = losses_flow.cpu().detach()
losses_logp_[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)] = losses_logp.cpu().detach()
optimize_fn(optimizer, model.parameters(), step=state['step'])
optimize_fn(flow_optimizer, flow_model.parameters(), step=flow_state['step'])
update_lipschitz(flow_model)
state['step'] += 1
state['ema'].update(model.parameters())
flow_state['step'] += 1
flow_state['ema'].update(flow_model.parameters())
return losses_, losses_score_, losses_flow_, losses_logp_
def flow_step_fn_fid(state, flow_state, batch):
"""Running one step of training or evaluation.
This function will undergo `jax.lax.scan` so that multiple steps can be pmapped and jit-compiled together
for faster execution.
Args:
state: A dictionary of training information, containing the score model, optimizer,
EMA status, and number of optimization steps.
flow_state: A dictionary of training information, containing the flow model, optimizer,
EMA status, and number of optimization steps.
batch: A mini-batch of training/evaluation data.
Returns:
losses: The list of loss values of this state and batch.
"""
model = state['model']
flow_model = flow_state['model']
optimizer = state['optimizer']
flow_optimizer = flow_state['optimizer']
batch_size = batch.shape[0]
num_micro_batch = config.optim.num_micro_batch
losses_ = torch.zeros(batch_size)
losses_score_ = torch.zeros(batch_size)
losses_flow_ = torch.zeros(batch_size)
losses_logp_ = torch.zeros(batch_size)
optimizer.zero_grad()
flow_optimizer.zero_grad()
if train:
# flow training (all losses)
for k in range(num_micro_batch):
mini_batch = batch[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)]
transformed_mini_batch, losses_flow = flow_forward(config, flow_model, mini_batch, reverse=False)
losses_score = loss_fn(model, transformed_mini_batch, importance_sampling=True)
losses_logp = calculate_logp(transformed_mini_batch)
if config.training.reduce_mean:
losses_flow = - losses_flow / np.prod(batch.shape[1:])
losses_logp = - losses_logp / np.prod(batch.shape[1:])
else:
losses_flow = - losses_flow
losses_logp = - losses_logp
assert losses_score.shape == losses_flow.shape == losses_logp.shape == torch.Size([transformed_mini_batch.shape[0]])
losses = losses_score + losses_flow + losses_logp
torch.mean(losses).backward(retain_graph=True)
# save losses
losses_[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)] = losses.cpu().detach()
losses_flow_[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)] = losses_flow.cpu().detach()
losses_logp_[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)] = losses_logp.cpu().detach()
optimize_fn(flow_optimizer, flow_model.parameters(), step=flow_state['step'])
update_lipschitz(flow_model)
flow_state['ema'].update(flow_model.parameters())
# diffusion training with st
if not config.training.st:
optimizer.zero_grad()
for k in range(num_micro_batch):
mini_batch = batch[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)]
if not config.training.st:
with torch.no_grad():
transformed_mini_batch, _ = flow_forward(config, flow_model, mini_batch, log_det=None, reverse=False)
transformed_mini_batch = transformed_mini_batch.detach()
losses_add_score = loss_fn(model, transformed_mini_batch, st=config.training.st, recon_loss=False)
if config.training.st:
const_adj = (losses_add_score.mean() / losses_score.mean()).detach()
for p in model.parameters():
if p.grad is None:
continue
else:
p.grad = const_adj * p.grad
torch.mean(losses_add_score).backward(retain_graph=True)
# save losses
losses_score_[batch_size // num_micro_batch * k: batch_size // num_micro_batch * (k + 1)] = losses_add_score.cpu().detach()
optimize_fn(optimizer, model.parameters(), step=state['step'])
state['ema'].update(model.parameters())
state['step'] += 1
flow_state['step'] += 1
return losses_, losses_score_, losses_flow_, losses_logp_
if config.flow.model == 'identity':
print('Train only the score network.')
return step_fn
elif config.flow.model != 'identity':
print('Train flow network with NLL.')
if not config.training.likelihood_weighting:
print('Train score network with FID-favorable setting (weighting function = variance weighting).')
return flow_step_fn_fid
else:
print('Train score network with NLL-favorable setting (weighting function = likelihood weighting).')
return flow_step_fn_nll
else:
raise NotImplementedError
def get_div_fn(fn):
"""Create the divergence function of `fn` using the Hutchinson-Skilling trace estimator."""
def div_fn(x, t, eps):
with torch.enable_grad():
#x.requires_grad_(True)
fn_eps = torch.sum(fn(x, t) * eps)
grad_fn_eps = torch.autograd.grad(fn_eps, x)[0]
#x.requires_grad_(False)
return torch.sum(grad_fn_eps * eps, dim=tuple(range(1, len(x.shape))))
return div_fn