forked from KaihuaTang/Scene-Graph-Benchmark.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboxlist_ops.py
177 lines (141 loc) · 5.37 KB
/
boxlist_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import scipy.linalg
from .bounding_box import BoxList
from maskrcnn_benchmark.layers import nms as _box_nms
def boxlist_nms(boxlist, nms_thresh, max_proposals=-1, score_field="scores"):
"""
Performs non-maximum suppression on a boxlist, with scores specified
in a boxlist field via score_field.
Arguments:
boxlist(BoxList)
nms_thresh (float)
max_proposals (int): if > 0, then only the top max_proposals are kept
after non-maximum suppression
score_field (str)
"""
if nms_thresh <= 0:
return boxlist
mode = boxlist.mode
boxlist = boxlist.convert("xyxy")
boxes = boxlist.bbox
score = boxlist.get_field(score_field)
keep = _box_nms(boxes, score, nms_thresh)
if max_proposals > 0:
keep = keep[: max_proposals]
boxlist = boxlist[keep]
return boxlist.convert(mode), keep
def remove_small_boxes(boxlist, min_size):
"""
Only keep boxes with both sides >= min_size
Arguments:
boxlist (Boxlist)
min_size (int)
"""
# TODO maybe add an API for querying the ws / hs
xywh_boxes = boxlist.convert("xywh").bbox
_, _, ws, hs = xywh_boxes.unbind(dim=1)
keep = (
(ws >= min_size) & (hs >= min_size)
).nonzero().squeeze(1)
return boxlist[keep]
# implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py
# with slight modifications
def boxlist_iou(boxlist1, boxlist2):
"""Compute the intersection over union of two set of boxes.
The box order must be (xmin, ymin, xmax, ymax).
Arguments:
box1: (BoxList) bounding boxes, sized [N,4].
box2: (BoxList) bounding boxes, sized [M,4].
Returns:
(tensor) iou, sized [N,M].
Reference:
https://github.com/chainer/chainercv/blob/master/chainercv/utils/bbox/bbox_iou.py
"""
if boxlist1.size != boxlist2.size:
raise RuntimeError(
"boxlists should have same image size, got {}, {}".format(boxlist1, boxlist2))
boxlist1 = boxlist1.convert("xyxy")
boxlist2 = boxlist2.convert("xyxy")
N = len(boxlist1)
M = len(boxlist2)
area1 = boxlist1.area()
area2 = boxlist2.area()
box1, box2 = boxlist1.bbox, boxlist2.bbox
lt = torch.max(box1[:, None, :2], box2[:, :2]) # [N,M,2]
rb = torch.min(box1[:, None, 2:], box2[:, 2:]) # [N,M,2]
TO_REMOVE = 1
wh = (rb - lt + TO_REMOVE).clamp(min=0) # [N,M,2]
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
iou = inter / (area1[:, None] + area2 - inter)
return iou
def boxlist_union(boxlist1, boxlist2):
"""
Compute the union region of two set of boxes
Arguments:
box1: (BoxList) bounding boxes, sized [N,4].
box2: (BoxList) bounding boxes, sized [N,4].
Returns:
(tensor) union, sized [N,4].
"""
assert len(boxlist1) == len(boxlist2) and boxlist1.size == boxlist2.size
boxlist1 = boxlist1.convert("xyxy")
boxlist2 = boxlist2.convert("xyxy")
union_box = torch.cat((
torch.min(boxlist1.bbox[:,:2], boxlist2.bbox[:,:2]),
torch.max(boxlist1.bbox[:,2:], boxlist2.bbox[:,2:])
),dim=1)
return BoxList(union_box, boxlist1.size, "xyxy")
def boxlist_intersection(boxlist1, boxlist2):
"""
Compute the intersection region of two set of boxes
Arguments:
box1: (BoxList) bounding boxes, sized [N,4].
box2: (BoxList) bounding boxes, sized [N,4].
Returns:
(tensor) intersection, sized [N,4].
"""
assert len(boxlist1) == len(boxlist2) and boxlist1.size == boxlist2.size
boxlist1 = boxlist1.convert("xyxy")
boxlist2 = boxlist2.convert("xyxy")
inter_box = torch.cat((
torch.max(boxlist1.bbox[:,:2], boxlist2.bbox[:,:2]),
torch.min(boxlist1.bbox[:,2:], boxlist2.bbox[:,2:])
),dim=1)
invalid_bbox = torch.max((inter_box[:,0] >= inter_box[:,2]).long(), (inter_box[:,1] >= inter_box[:,3]).long())
inter_box[invalid_bbox > 0] = 0
return BoxList(inter_box, boxlist1.size, "xyxy")
# TODO redundant, remove
def _cat(tensors, dim=0):
"""
Efficient version of torch.cat that avoids a copy if there is only a single element in a list
"""
assert isinstance(tensors, (list, tuple))
if len(tensors) == 1:
return tensors[0]
return torch.cat(tensors, dim)
def cat_boxlist(bboxes):
"""
Concatenates a list of BoxList (having the same image size) into a
single BoxList
Arguments:
bboxes (list[BoxList])
"""
assert isinstance(bboxes, (list, tuple))
assert all(isinstance(bbox, BoxList) for bbox in bboxes)
size = bboxes[0].size
assert all(bbox.size == size for bbox in bboxes)
mode = bboxes[0].mode
assert all(bbox.mode == mode for bbox in bboxes)
fields = set(bboxes[0].fields())
assert all(set(bbox.fields()) == fields for bbox in bboxes)
cat_boxes = BoxList(_cat([bbox.bbox for bbox in bboxes], dim=0), size, mode)
for field in fields:
if field in bboxes[0].triplet_extra_fields:
triplet_list = [bbox.get_field(field).numpy() for bbox in bboxes]
data = torch.from_numpy(scipy.linalg.block_diag(*triplet_list))
cat_boxes.add_field(field, data, is_triplet=True)
else:
data = _cat([bbox.get_field(field) for bbox in bboxes], dim=0)
cat_boxes.add_field(field, data)
return cat_boxes