-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathCDTNet.py
140 lines (119 loc) · 4.76 KB
/
CDTNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from functools import partial
import torch
from torchvision import transforms
from easydict import EasyDict as edict
from albumentations import HorizontalFlip, Resize, RandomResizedCrop
from iharm.data.compose import ComposeDataset
from iharm.data.hdataset import HDataset
from iharm.data.transforms import HCompose
from iharm.engine.simple_trainer import SimpleHTrainer
from iharm.model import initializer
from iharm.model.base import CDTNet
from iharm.model.losses import MaskWeight_MSE, MSE
from iharm.model.metrics import DenormalizedMSEMetric, DenormalizedPSNRMetric, PSNRMetric, MSEMetric
from iharm.utils.log import logger
from iharm.model.modeling.lut import weights_init_normal_classifier
def train(cfg):
model, model_cfg = init_model(cfg)
model_train(model, cfg, model_cfg)
def init_model(cfg):
model_cfg = edict()
model_cfg.crop_size = (cfg.hr, cfg.hr)
model_cfg.input_normalization = {
'mean': [.485, .456, .406],
'std': [.229, .224, .225]
}
model_cfg.depth = 4
model_cfg.input_transform = transforms.Compose([
transforms.ToTensor(),
])
model_cfg.n_lut=cfg.n_lut
model = CDTNet(depth=4, ch=32, image_fusion=True, attention_mid_k=0.5,
attend_from=2, batchnorm_from=2, n_lut=cfg.n_lut)
model.set_resolution(cfg.hr_w, cfg.hr_h, cfg.lr, cfg.finetune_base)
model.is_sim = cfg.is_sim
model.to(cfg.device)
model.encoder.apply(initializer.XavierGluon(rnd_type='gaussian', magnitude=1.0))
model.decoder.apply(initializer.XavierGluon(rnd_type='gaussian', magnitude=1.0))
model.lut.classifier.apply(weights_init_normal_classifier)
torch.nn.init.constant_(model.lut.classifier.fc.bias.data, 1.0)
model.refine.apply(initializer.XavierGluon(rnd_type='gaussian', magnitude=2.0))
return model, model_cfg
def model_train(model, cfg, model_cfg):
cfg.batch_size = 16 if cfg.batch_size < 1 else cfg.batch_size
cfg.val_batch_size = 1
cfg.input_normalization = None #model_cfg.input_normalization
crop_size = model_cfg.crop_size
loss_cfg = edict()
loss_cfg.pixel_loss = MaskWeight_MSE(min_area=100)
loss_cfg.pixel_loss_weight = 1.0
loss_cfg.base_pixel_loss = MaskWeight_MSE(min_area=100)
loss_cfg.base_pixel_loss_weight = 1.0
loss_cfg.lut_loss = MaskWeight_MSE(min_area=100)
loss_cfg.lut_loss_weight = 1.0
num_epochs = 120
train_augmentator = HCompose([
RandomResizedCrop(*crop_size, scale=(0.5, 1.0)),
HorizontalFlip(),
])
val_augmentator = HCompose([
Resize(*crop_size)
])
datasets_names = cfg.datasets.split(',')
train_datasets_list = []
if 'HDay2Night' in datasets_names:
train_datasets_list.append(HDataset(cfg.HDAY2NIGHT_PATH, split='train'))
if 'HFlickr' in datasets_names:
train_datasets_list.append(HDataset(cfg.HFLICKR_PATH, split='train'))
if 'HCOCO' in datasets_names:
train_datasets_list.append(HDataset(cfg.HCOCO_PATH, split='train'))
if 'HAdobe5k' in datasets_names:
train_datasets_list.append(HDataset(cfg.HADOBE5K_PATH, split='train'))
val_datasets_list = []
if 'HDay2Night' in datasets_names:
val_datasets_list.append(HDataset(cfg.HDAY2NIGHT_PATH, split='test'))
if 'HFlickr' in datasets_names:
val_datasets_list.append(HDataset(cfg.HFLICKR_PATH, split='test'))
if 'HCOCO' in datasets_names:
val_datasets_list.append(HDataset(cfg.HCOCO_PATH, split='test'))
if 'HAdobe5k' in datasets_names:
val_datasets_list.append(HDataset(cfg.HADOBE5K_PATH, split='test'))
trainset = ComposeDataset(
train_datasets_list,
augmentator=train_augmentator,
input_transform=model_cfg.input_transform,
keep_background_prob=0.05,
)
valset = ComposeDataset(
val_datasets_list,
augmentator=val_augmentator,
input_transform=model_cfg.input_transform,
keep_background_prob=-1,
)
optimizer_params = {
'lr': 1e-3,
'betas': (0.9, 0.999), 'eps': 1e-8
}
lr_scheduler = partial(torch.optim.lr_scheduler.MultiStepLR,
milestones=[50, 100], gamma=0.1)
trainer = SimpleHTrainer(
model, cfg, model_cfg, loss_cfg,
trainset, valset,
optimizer='adam',
optimizer_params=optimizer_params,
lr_scheduler=lr_scheduler,
metrics=[
PSNRMetric(
'images', 'target_images'),
MSEMetric(
'images', 'target_images')
],
checkpoint_interval=1,
image_dump_interval=100
)
logger.info(f'Starting Epoch: {cfg.start_epoch}')
logger.info(f'Total Epochs: {num_epochs}')
for epoch in range(cfg.start_epoch, num_epochs):
trainer.training(epoch)
trainer.validation(epoch)
#trainer.training(epoch)