forked from espressif/arduino-esp32
-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdl_lib_matrix3dq.h
1441 lines (1350 loc) · 65.5 KB
/
dl_lib_matrix3dq.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
#include "dl_lib_matrix3d.h"
typedef int16_t qtp_t;
/**
* Matrix for input, filter, and output
* @Warning: the sequence of variables is fixed, cannot be modified, otherwise there will be errors in
* some handwrite xtensa instruction functions
*/
typedef struct
{
/******* fix start *******/
int w; /*!< Width */
int h; /*!< Height */
int c; /*!< Channel */
int n; /*!< Number of filter, input and output must be 1 */
int stride; /*!< Step between lines */
int exponent; /*!< Exponent for quantization */
qtp_t *item; /*!< Data */
/******* fix end *******/
} dl_matrix3dq_t;
#ifndef DL_QTP_SHIFT
#define DL_QTP_SHIFT 15
#define DL_ITMQ(m, x, y) m->itemq[(y) + (x)*m->stride]
#define DL_QTP_RANGE ((1 << DL_QTP_SHIFT) - 1)
#define DL_QTP_MAX 32767
#define DL_QTP_MIN -32768
#define DL_QTP_EXP_NA 255 //non-applicable exponent because matrix is null
#define DL_SHIFT_AUTO 32
#endif
/**
* Implementation of matrix relative operations
*/
typedef enum
{
DL_C_IMPL = 0, /*!< ANSI C */
DL_XTENSA_IMPL = 1 /*!< Handwrite xtensa instruction */
} dl_conv_mode;
/**
* Configuration of mobilenet operation
*/
typedef struct
{
int stride_x; /*!< Strides of width */
int stride_y; /*!< Strides of height */
dl_padding_type padding; /*!< Padding type */
dl_conv_mode mode; /*!< Implementation mode */
int dilate_exponent; /*!< Exponent of dilation filter */
int depthwise_exponent; /*!< Exponent of depthwise filter */
int compress_exponent; /*!< Exponent of compress filter */
} dl_matrix3dq_mobilenet_config_t;
typedef struct
{
int stride_x; /*!< Strides of width */
int stride_y; /*!< Strides of height */
dl_padding_type padding; /*!< Padding type */
dl_conv_mode mode; /*!< Implementation mode */
int dw1_exponent; /*!< Exponent of dw1 filter */
int pw1_exponent; /*!< Exponent of pw1 filter */
int dw2_exponent; /*!< Exponent of dw2 filter */
int pw2_exponent; /*!< Exponent of pw2 filter */
int shortcut; /*!< Shortcut connection flag */
int save_input; /*!< Input save flag */
} dl_matrix3dq_blazeblock_config_t;
//
// Utility
//
/*
* @brief Allocate a 3d quantised matrix
*
* @param n Number of filters, for input and output, should be 1
* @param w Width of matrix
* @param h Height of matrix
* @param c Channel of matrix
* @param e Exponent of matrix data
* @return 3d quantized matrix
*/
static inline dl_matrix3dq_t *dl_matrix3dq_alloc(int n, int w, int h, int c, int e)
{
dl_matrix3dq_t *r = (dl_matrix3dq_t *)dl_lib_calloc(1, sizeof(dl_matrix3dq_t), 0);
if (NULL == r)
{
printf("dl_matrix3dq alloc failed.\n");
return NULL;
}
qtp_t *items = (qtp_t *)dl_lib_calloc(n * w * h * c, sizeof(qtp_t), 16);
if (NULL == items)
{
printf("matrix3dq item alloc failed.\n");
dl_lib_free(r);
return NULL;
}
r->w = w;
r->h = h;
r->c = c;
r->n = n;
r->exponent = e;
r->stride = w * c;
r->item = items;
return r;
}
/*
* @brief Free a 3d quantized matrix
*
* @param m 3d quantised matrix
*/
static inline void dl_matrix3dq_free(dl_matrix3dq_t *m)
{
if (NULL == m)
return;
if (NULL == m->item)
{
dl_lib_free(m);
return;
}
dl_lib_free(m->item);
dl_lib_free(m);
}
/**
* @brief Copy a range of items from an existing matrix to a preallocated matrix
*
* @param dst The resulting slice matrix
* @param src Old matrix to slice.
* @param x X-offset of the origin of the returned matrix within the sliced matrix
* @param y Y-offset of the origin of the returned matrix within the sliced matrix
* @param w Width of the resulting matrix
* @param h Height of the resulting matrix
*/
void dl_matrix3dq_slice_copy(dl_matrix3dq_t *dst, dl_matrix3dq_t *src, int x, int y, int w, int h);
/**
* @brief Transform a sliced matrix block from nhwc to nchw, the block needs to be memory continous.
*
* @param out The destination sliced matrix in nchw
* @param in The source sliced matrix in nhwc
*/
void dl_matrix3dq_sliced_transform_nchw(dl_matrix3dq_t *out,
dl_matrix3dq_t *in);
/**
* @brief Transform a fixed point matrix to a float point matrix
*
* @param m Quantized matrix
* @return Float point matrix
*/
dl_matrix3d_t *dl_matrix3d_from_matrixq(dl_matrix3dq_t *m);
/**
* @brief Transform a float point matrix to a fixed point matrix with pre-defined exponent
*
* @param m Float point matrix
* @param exponent Exponent for resulting matrix
* @return Fixed point matrix
*/
dl_matrix3dq_t *dl_matrixq_from_matrix3d_qmf(dl_matrix3d_t *m, int exponent);
/**
* @brief Transform a float point matrix to a fixed point matrix. The exponent is defined by the distribution of the input matrix.
*
* @param m Float point matrix
* @return Fixed point matrix
*/
dl_matrix3dq_t *dl_matrixq_from_matrix3d(dl_matrix3d_t *m);
/**
* @brief Truncate the overflowed 16bit number
*
* @param value Input value
* @param location Location tag
* @return qtp_t Truncated value
*/
qtp_t dl_matrix3dq_quant_range_exceeded_checking(int64_t value, char *location);
/**
* @brief Reform a quantized matrix with exponent
*
* @param out Preallocated resulting matrix
* @param in Input matrix
* @param exponent Exponent for resulting matrix
*/
void dl_matrix3dq_shift_exponent(dl_matrix3dq_t *out, dl_matrix3dq_t *in, int exponent);
/**
* @brief Do batch normalization for a quantized matrix
*
* @param m Input and output quantized matrix, data will be updated
* @param scale Scale of batch-norm
* @param offset Offset of batch-norm
*/
void dl_matrix3dq_batch_normalize(dl_matrix3dq_t *m, dl_matrix3dq_t *scale, dl_matrix3dq_t *offset);
/**
* @brief Add two quantized matrix with a pre-defined exponent
*
* @param in_1 Adder 1
* @param in_2 Adder 2
* @param exponent Exponent for resulting matrix
* @return dl_matrix3dq_t* Result of accumulation of two matrix
*/
dl_matrix3dq_t *dl_matrix3dq_add(dl_matrix3dq_t *in_1, dl_matrix3dq_t *in_2, int exponent);
/**
* @brief Add two quantized matrix with different channels
*
* @param in_1 Adder 1
* @param in_2 Adder 2
* @param exponent Exponent for resulting matrix
* @return dl_matrix3dq_t* Result of accumulation of two matrix
*/
dl_matrix3dq_t *dl_matrix3dq_add_channel_diff(dl_matrix3dq_t *in_1, dl_matrix3dq_t *in_2, int exponent);
//
// Activation
//
/**
* @brief Do relu for a quantized matrix
*
* @param in Input and output quantized matrix, data will be updated
*/
void dl_matrix3dq_relu(dl_matrix3dq_t *in);
/**
* @brief Do relu with clips for a quantized matrix
*
* @param in Input and output quantized matrix, data will be updated
* @param clip Float point value to limit the maximum data
*/
void dl_matrix3dq_relu_clip(dl_matrix3dq_t *in, fptp_t clip);
/**
* @brief Do leaky relu for a quantized matrix
*
* @param in Input and output quantized matrix, data will be updated
* @param alpha Float point value to multiply for those less than zero
* @param clip Float point value to limit the maximum data
*/
void dl_matrix3dq_leaky_relu(dl_matrix3dq_t *in, fptp_t alpha, fptp_t clip);
/**
* @brief Do prelu for a quantized matrix
*
* @param in Input and output quantized matrix, data will be updated
* @param alpha Quantized matrix to multiply for those less than zero
*/
void dl_matrix3dq_p_relu(dl_matrix3dq_t *in, dl_matrix3dq_t *alpha);
//
// Concat
//
/**
* @brief Concatenate two quantized matrix in channel
*
* @param in_1 Quantized matrix to be concatenated
* @param in_2 Quantized matrix to be concatenated
* @return Quantized matrix with the same width and height of in_1 and in_2, and with the sum of channel number of in_1 and in_2
*/
dl_matrix3dq_t *dl_matrix3dq_concat(dl_matrix3dq_t *in_1,
dl_matrix3dq_t *in_2);
/**
* @brief Concatenate four quantized matrix in channel
*
* @param in_1 Quantized matrix to be concatenated
* @param in_2 Quantized matrix to be concatenated
* @param in_3 Quantized matrix to be concatenated
* @param in_4 Quantized matrix to be concatenated
* @return Quantized matrix with the same width and height of all inputs, and with the sum of channel number of all inputs
*/
dl_matrix3dq_t *dl_matrix3dq_concat_4(dl_matrix3dq_t *in_1,
dl_matrix3dq_t *in_2,
dl_matrix3dq_t *in_3,
dl_matrix3dq_t *in_4);
/**
* @brief Concatenate four quantized matrix in channel
*
* @param in_1 Quantized matrix to be concatenated
* @param in_2 Quantized matrix to be concatenated
* @param in_3 Quantized matrix to be concatenated
* @param in_4 Quantized matrix to be concatenated
* @param in_5 Quantized matrix to be concatenated
* @param in_6 Quantized matrix to be concatenated
* @param in_7 Quantized matrix to be concatenated
* @param in_8 Quantized matrix to be concatenated
* @return Quantized matrix with the same width and height of all inputs, and with the sum of channel number of all inputs
*/
dl_matrix3dq_t *dl_matrix3dq_concat_8(dl_matrix3dq_t *in_1,
dl_matrix3dq_t *in_2,
dl_matrix3dq_t *in_3,
dl_matrix3dq_t *in_4,
dl_matrix3dq_t *in_5,
dl_matrix3dq_t *in_6,
dl_matrix3dq_t *in_7,
dl_matrix3dq_t *in_8);
//
// Conv 1x1
//
/**
* @brief Do 1x1 convolution with a quantized matrix
*
* @param out Preallocated quantized matrix, size (1, w, h, n)
* @param in Input matrix, size (1, w, h, c)
* @param filter 1x1 filter, size (n, 1, 1, c)
* @param mode Implementation mode
* @param name Layer name to debug
*/
void dl_matrix3dqq_conv_1x1(dl_matrix3dq_t *out,
dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_conv_mode mode,
char *name);
/**
* @brief Do 1x1 convolution with a quantized matrix, with relu activation
*
* @param out Preallocated quantized matrix, size (1, w, h, n)
* @param in Input matrix, size (1, w, h, c)
* @param filter 1x1 filter, size (n, 1, 1, c)
* @param mode Implementation mode
* @param name Layer name to debug
*/
void dl_matrix3dqq_conv_1x1_with_relu(dl_matrix3dq_t *out,
dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_conv_mode mode,
char *name);
/**
* @brief Do 1x1 convolution with a quantized matrix, with bias adding
*
* @param out Preallocated quantized matrix, size (1, w, h, n)
* @param in Input matrix, size (1, w, h, c)
* @param filter 1x1 filter, size (n, 1, 1, c)
* @param bias Bias, size (1, 1, 1, n)
* @param mode Implementation mode
* @param name Layer name to debug
*/
void dl_matrix3dqq_conv_1x1_with_bias(dl_matrix3dq_t *out,
dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
dl_conv_mode mode,
char *name);
/**
* @brief Do 1x1 convolution with a quantized matrix, with bias adding
*
* @param out Preallocated quantized matrix, size (1, w, h, n)
* @param in Input matrix, size (1, w, h, c)
* @param filter 1x1 filter, size (n, 1, 1, c)
* @param bias Bias, size (1, 1, 1, n)
* @param mode Implementation mode
* @param name Layer name to debug
*/
void dl_matrix3dqq_conv_1x1_with_bias_relu(dl_matrix3dq_t *out,
dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
dl_conv_mode mode,
char *name);
/**
* @brief Do 1x1 convolution with a quantized matrix, with prelu activation
*
* @param out Preallocated quantized matrix, size (1, w, h, n)
* @param in Input matrix, size (1, w, h, c)
* @param filter 1x1 filter, size (n, 1, 1, c)
* @param prelu prelu params, size (1, 1, 1, n)
* @param mode Implementation mode
* @param name Layer name to debug
*/
void dl_matrix3dqq_conv_1x1_with_prelu(dl_matrix3dq_t *out,
dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *prelu,
dl_conv_mode mode,
char *name);
/**
* @brief Do 1x1 convolution with an 8-bit fixed point matrix
*
* @param out Preallocated quantized matrix, size (1, w, h, n)
* @param in Input matrix, size (1, w, h, c)
* @param filter 1x1 filter, size (n, 1, 1, c)
* @param mode Implementation mode
* @param name Layer name to debug
*/
void dl_matrix3duq_conv_1x1(dl_matrix3dq_t *out,
dl_matrix3du_t *in,
dl_matrix3dq_t *filter,
dl_conv_mode mode,
char *name);
/**
* @brief Do 1x1 convolution with an 8-bit fixed point matrix, with bias adding
*
* @param out Preallocated quantized matrix, size (1, w, h, n)
* @param in Input matrix, size (1, w, h, c)
* @param filter 1x1 filter, size (n, 1, 1, c)
* @param bias Bias, size (1, 1, 1, n)
* @param mode Implementation mode
* @param name Layer name to debug
*/
void dl_matrix3duq_conv_1x1_with_bias(dl_matrix3dq_t *out,
dl_matrix3du_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
dl_conv_mode mode,
char *name);
//
// Conv 3x3
//
/**
* @brief Do 3x3 convolution with a quantized matrix
*
* @param input Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type, 0: valid, 1: same
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3(dl_matrix3dq_t *input,
dl_matrix3dq_t *filter,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do 3x3 convolution with a quantized matrix, with bias adding
*
* @param input Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param bias Bias, size (1, 1, 1, n)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3_with_bias(dl_matrix3dq_t *input,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do 3x3 convolution with a quantized matrix, with bias adding, relu activation
*
* @param input Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param bias Bias, size (1, 1, 1, n)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3_with_bias_relu(dl_matrix3dq_t *input,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do 3x3 convolution with an 8-bit fixed point matrix, with bias adding
*
* @param input Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param bias Bias, size (1, 1, 1, n)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias(dl_matrix3du_t *input,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do 3x3 convolution with an 8-bit fixed point matrix, with bias adding, prelu activation
*
* @param input Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param bias Bias, size (1, 1, 1, n)
* @param prelu prelu params, size (1, 1, 1, n)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias_prelu(dl_matrix3du_t *input,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
dl_matrix3dq_t *prelu,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do 3x3 convolution with a quantized matrix, with bias adding, prelu activation
*
* @param input Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param bias Bias, size (1, 1, 1, n)
* @param prelu prelu params, size (1, 1, 1, n)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3_with_bias_prelu(dl_matrix3dq_t *input,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
dl_matrix3dq_t *prelu,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
//
// Conv common
//
/**
* @brief Do a general convolution layer pass, size is (number, width, height, channel)
*
* @param in Input image
* @param filter Weights of the neurons
* @param bias Bias for the CNN layer.
* @param stride_x The step length of the convolution window in x(width) direction
* @param stride_y The step length of the convolution window in y(height) direction
* @param padding One of VALID or SAME
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect.
* If ESP_PLATFORM is not defined, this value is not used.
* @return The result of CNN layer.
*/
dl_matrix3dq_t *dl_matrix3dqq_conv_common(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
dl_conv_mode mode);
/**
* @brief Do a general convolution layer pass for an 8-bit fixed point matrix, size is (number, width, height, channel)
*
* @param in Input image
* @param filter Weights of the neurons
* @param bias Bias for the CNN layer.
* @param stride_x The step length of the convolution window in x(width) direction
* @param stride_y The step length of the convolution window in y(height) direction
* @param padding One of VALID or SAME
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect.
* If ESP_PLATFORM is not defined, this value is not used.
* @return The result of CNN layer.
*/
dl_matrix3dq_t *dl_matrix3duq_conv_common(dl_matrix3du_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
dl_conv_mode mode);
//
// Depthwise 3x3
//
/**
* @brief Do 3x3 depthwise convolution with an 8-bit fixed point matrix
*
* @param in Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (1, 3, 3, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type, 0: valid, 1: same
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3duq_depthwise_conv_3x3(dl_matrix3du_t *in,
dl_matrix3dq_t *filter,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do 3x3 depthwise convolution with a quantized matrix
*
* @param in Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (1, 3, 3, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type, 0: valid, 1: same
* @param relu ReLU, 0: don't, 1: do
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
int stride_x,
int stride_y,
dl_padding_type padding,
int relu,
int exponent,
char *name);
#if CONFIG_DEVELOPING_CODE
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_2(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_3(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
#endif
/**
* @brief Do 3x3 depthwise convolution with a quantized matrix, with bias adding
*
* @param in Input matrix, size (1, w, h, c)
* @param f 3x3 filter, size (1, 3, 3, c)
* @param bias Bias, size (1, 1, 1, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type, 0: valid, 1: same
* @param exponent Exponent for resulting matrix
* @param relu Whether to use relu activation
* @param name Layer name to debug
* @return Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_bias(dl_matrix3dq_t *in,
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
int relu,
char *name);
/**
* @brief Do 3x3 depthwise convolution with a quantized matrix, with bias adding and stride 1
*
* @param in Input matrix, size (1, w, h, c)
* @param f 3x3 filter, size (1, 3, 3, c)
* @param bias Bias, size (1, 1, 1, c)
* @param padding Padding type, 0: valid, 1: same
* @param exponent Exponent for resulting matrix
* @param relu Whether to use relu activation
* @param name Layer name to debug
* @return Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3s1_with_bias(dl_matrix3dq_t *in,
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
dl_padding_type padding,
int exponent,
int relu,
char *name);
/**
* @brief Do 3x3 depthwise convolution with a quantized matrix, with prelu activation
*
* @param in Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (1, 3, 3, c)
* @param prelu prelu params, size (1, 1, 1, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_prelu(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *prelu,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do 3x3 depthwise convolution with a quantized matrix, with bias adding and prelu activation
*
* @param in Input matrix, size (1, w, h, c)
* @param f 3x3 filter, size (1, 3, 3, c)
* @param bias Bias, size (1, 1, 1, c)
* @param prelu prelu params, size (1, 1, 1, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_bias_prelu(dl_matrix3dq_t *in,
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
dl_matrix3dq_t *prelu,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do global depthwise convolution with a quantized matrix, with bias adding
*
* @param in Input matrix, size (1, w, h, c)
* @param filter filter, size (1, w, h, c)
* @param bias Bias, size (1, 1, 1, c)
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_global_depthwise_conv_with_bias(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
int exponent,
char *name);
//
// Depthwise 2x2
//
/**
* @brief Do 2x2 depthwise convolution with a quantized matrix
*
* @param in Input matrix, size (1, w, h, c)
* @param filter 2x2 filter, size (1, 2, 2, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type, 0: valid, 1: same
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_2x2(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do 2x2 depthwise convolution with a quantized matrix, with bias adding
*
* @param in Input matrix, size (1, w, h, c)
* @param f 2x2 filter, size (1, 2, 2, c)
* @param bias Bias, size (1, 1, 1, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type, 0: valid, 1: same
* @param exponent Exponent for resulting matrix
* @param relu Whether to use relu activation
* @param name Layer name to debug
* @return Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_2x2_with_bias(dl_matrix3dq_t *in,
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
int relu,
char *name);
/**
* @brief Do 2x2 depthwise convolution with a quantized matrix, with prelu activation
*
* @param in Input matrix, size (1, w, h, c)
* @param filter 2x2 filter, size (1, 2, 2, c)
* @param prelu prelu params, size (1, 1, 1, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_2x2_with_prelu(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *prelu,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do 2x2 depthwise convolution with a quantized matrix, with bias adding and prelu activation
*
* @param in Input matrix, size (1, w, h, c)
* @param f 2x2 filter, size (1, 2, 2, c)
* @param bias Bias, size (1, 1, 1, c)
* @param prelu prelu params, size (1, 1, 1, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_2x2_with_bias_prelu(dl_matrix3dq_t *in,
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
dl_matrix3dq_t *prelu,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
//
// Depthwise 5x5
//
/**
* @brief Do 5x5 depthwise convolution with a quantized matrix
*
* @param in Input matrix, size (1, w, h, c)
* @param filter 5x5 filter, size (1, 5, 5, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type, 0: valid, 1: same
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_5x5(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do 5x5 depthwise convolution with a quantized matrix, with bias adding
*
* @param in Input matrix, size (1, w, h, c)
* @param f 5x5 filter, size (1, 5, 5, c)
* @param bias Bias, size (1, 1, 1, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type, 0: valid, 1: same
* @param exponent Exponent for resulting matrix
* @param relu Whether to use relu activation
* @param name Layer name to debug
* @return Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_5x5_with_bias(dl_matrix3dq_t *in,
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
int relu,
char *name);
/**
* @brief Do 5x5 depthwise convolution with a quantized matrix, with prelu activation
*
* @param in Input matrix, size (1, w, h, c)
* @param filter 5x5 filter, size (1, 5, 5, c)
* @param prelu prelu params, size (1, 1, 1, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_5x5_with_prelu(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *prelu,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief Do 5x5 depthwise convolution with a quantized matrix, with bias adding and prelu activation
*
* @param in Input matrix, size (1, w, h, c)
* @param f 5x5 filter, size (1, 5, 5, c)
* @param bias Bias, size (1, 1, 1, c)
* @param prelu prelu params, size (1, 1, 1, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param name Layer name to debug
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_5x5_with_bias_prelu(dl_matrix3dq_t *in,
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
dl_matrix3dq_t *prelu,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
//
// Depthwise Common
//
#if CONFIG_DEVELOPING_CODE
/**
* @brief Do a general depthwise convolution layer pass with a quantized matrix
*
* @param in Input matrix, size (1, w, h, c)
* @param filter Weights of the neurons, size (1, k_w, k_h, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type
* @param exponent Exponent for resulting matrix
* @param mode Implementation mode
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_common(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
dl_conv_mode mode);
/**
* @brief Do a general depthwise convolution layer pass with an 8-bit fixed point matrix
*
* @param in Input matrix, size (1, w, h, c)
* @param filter Weights of the neurons, size (1, k_w, k_h, c)
* @param stride_x Stride of width
* @param stride_y Stride of height